Accelerating Top-k ListNet Training for Ranking Using FPGA

Qiang Li, Shane T. Fleming, David B. Thomas, P. Cheung
{"title":"Accelerating Top-k ListNet Training for Ranking Using FPGA","authors":"Qiang Li, Shane T. Fleming, David B. Thomas, P. Cheung","doi":"10.1109/FPT.2018.00044","DOIUrl":null,"url":null,"abstract":"Document ranking is used to order query results by relevance, with different document ranking models providing trade-offs between ranking accuracy and training speed. ListNet is a well-known ranking approach which achieves high accuracy, but is infeasible in practice because training time is quadratic in the number of training documents. This paper considers the acceleration of ListNet training using FPGAs, and improves training speed by using hardware-oriented algorithmic optimisations, and by transforming algorithm structures to remove dependencies and expose parallelism. We implemented our approach on a Xilinx ultrascale FPGA board and applied it to the MQ 2008 benchmark dataset for ranking. Compared to existing ranking approaches ours shows an improvement from 0.29 to 0.33 in ranking accuracy on the same dataset using the NDCG@10 metric. Taking into account the communication between software and hardware, we are able to achieve a 3.21x speedup over an Intel Xeon1.6 GHz CPU implementation.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Document ranking is used to order query results by relevance, with different document ranking models providing trade-offs between ranking accuracy and training speed. ListNet is a well-known ranking approach which achieves high accuracy, but is infeasible in practice because training time is quadratic in the number of training documents. This paper considers the acceleration of ListNet training using FPGAs, and improves training speed by using hardware-oriented algorithmic optimisations, and by transforming algorithm structures to remove dependencies and expose parallelism. We implemented our approach on a Xilinx ultrascale FPGA board and applied it to the MQ 2008 benchmark dataset for ranking. Compared to existing ranking approaches ours shows an improvement from 0.29 to 0.33 in ranking accuracy on the same dataset using the NDCG@10 metric. Taking into account the communication between software and hardware, we are able to achieve a 3.21x speedup over an Intel Xeon1.6 GHz CPU implementation.
利用FPGA加速Top-k ListNet排序训练
文档排序用于根据相关性对查询结果排序,不同的文档排序模型提供了排序精度和训练速度之间的折衷。ListNet是一种众所周知的排序方法,它具有很高的准确率,但由于训练时间在训练文档数量上是二次的,因此在实践中并不可行。本文考虑了使用fpga加速ListNet训练,并通过使用面向硬件的算法优化和转换算法结构来消除依赖性和暴露并行性来提高训练速度。我们在Xilinx超大规模FPGA板上实现了我们的方法,并将其应用于MQ 2008基准测试数据集进行排名。与现有的排名方法相比,我们使用NDCG@10指标在相同数据集上的排名精度从0.29提高到0.33。考虑到软件和硬件之间的通信,我们能够在Intel Xeon1.6 GHz CPU实现上实现3.21倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信