Eduarda Monteiro, B. Vizzotto, C. Diniz, B. Zatt, S. Bampi
{"title":"Applying CUDA Architecture to Accelerate Full Search Block Matching Algorithm for High Performance Motion Estimation in Video Encoding","authors":"Eduarda Monteiro, B. Vizzotto, C. Diniz, B. Zatt, S. Bampi","doi":"10.1109/SBAC-PAD.2011.19","DOIUrl":null,"url":null,"abstract":"This work presents a parallel GPU-based solution for the Motion Estimation (ME) process in a video encoding system. We propose a way to partition the steps of Full Search block matching algorithm in the CUDA architecture. A comparison among the performance achieved by this solution with a theoretical model and two other implementations (sequential and parallel using OpenMP library) is made as well. We obtained a O(n^2/log^2n) speed-up which fits the proposed theoretical model considering different search areas. It represents up to 600x gain compared to the serial implementation, and 66x compared to the parallel OpenMP implementation.","PeriodicalId":390734,"journal":{"name":"2011 23rd International Symposium on Computer Architecture and High Performance Computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 23rd International Symposium on Computer Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This work presents a parallel GPU-based solution for the Motion Estimation (ME) process in a video encoding system. We propose a way to partition the steps of Full Search block matching algorithm in the CUDA architecture. A comparison among the performance achieved by this solution with a theoretical model and two other implementations (sequential and parallel using OpenMP library) is made as well. We obtained a O(n^2/log^2n) speed-up which fits the proposed theoretical model considering different search areas. It represents up to 600x gain compared to the serial implementation, and 66x compared to the parallel OpenMP implementation.