Distributionally Robust Optimization

Jian Gao, Yida Xu, J. Barreiro‐Gomez, Massa Ndong, Michail Smyrnakis, Hamidou TembineJian Gao, M. Smyrnakis, H. Tembine
{"title":"Distributionally Robust Optimization","authors":"Jian Gao, Yida Xu, J. Barreiro‐Gomez, Massa Ndong, Michail Smyrnakis, Hamidou TembineJian Gao, M. Smyrnakis, H. Tembine","doi":"10.5772/INTECHOPEN.76686","DOIUrl":null,"url":null,"abstract":"This chapter presents a class of distributionally robust optimization problems in which a decision-maker has to choose an action in an uncertain environment. The decision-maker has a continuous action space and aims to learn her optimal strategy. The true distribution of the uncertainty is unknown to the decision-maker. This chapter provides alternative ways to select a distribution based on empirical observations of the decision-maker. This leads to a distributionally robust optimization problem. Simple algorithms, whose dynamics are inspired from the gradient flows, are proposed to find local optima. The method is extended to a class of optimization problems with orthogonal constraints and coupled constraints over the simplex set and polytopes. The designed dynamics do not use the projection operator and are able to satisfy both upper- and lower-bound constraints. The convergence rate of the algorithm to generalized evolutionarily stable strategy is derived using a mean regret estimate. Illustrative examples are provided.","PeriodicalId":337657,"journal":{"name":"Optimization Algorithms - Examples","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Algorithms - Examples","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

This chapter presents a class of distributionally robust optimization problems in which a decision-maker has to choose an action in an uncertain environment. The decision-maker has a continuous action space and aims to learn her optimal strategy. The true distribution of the uncertainty is unknown to the decision-maker. This chapter provides alternative ways to select a distribution based on empirical observations of the decision-maker. This leads to a distributionally robust optimization problem. Simple algorithms, whose dynamics are inspired from the gradient flows, are proposed to find local optima. The method is extended to a class of optimization problems with orthogonal constraints and coupled constraints over the simplex set and polytopes. The designed dynamics do not use the projection operator and are able to satisfy both upper- and lower-bound constraints. The convergence rate of the algorithm to generalized evolutionarily stable strategy is derived using a mean regret estimate. Illustrative examples are provided.
分布鲁棒优化
本章提出了一类分布鲁棒优化问题,其中决策者必须在不确定环境中选择一种行动。决策者有一个连续的行动空间,目标是学习她的最优策略。不确定性的真实分布对决策者来说是未知的。本章提供了基于决策者的经验观察选择分布的替代方法。这导致了一个分布鲁棒优化问题。提出了一种简单的算法,该算法的动力学灵感来自于梯度流,用于寻找局部最优解。将该方法推广到一类具有正交约束和耦合约束的单纯形集和多面体优化问题。所设计的动力学不使用投影算子,能够同时满足上界和下界约束。利用平均后悔估计导出了该算法对广义进化稳定策略的收敛速度。提供了说明性示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信