Big data landscapes: improving the visualization of machine learning-based clustering algorithms

D. Kammer, Mandy Keck, Thomas Gründer, Rainer Groh
{"title":"Big data landscapes: improving the visualization of machine learning-based clustering algorithms","authors":"D. Kammer, Mandy Keck, Thomas Gründer, Rainer Groh","doi":"10.1145/3206505.3206556","DOIUrl":null,"url":null,"abstract":"With the internet, massively heterogeneous data sources need to be understood and classified to provide suitable services to users such as content observation, data exploration, e-commerce, or adaptive learning environments. The key to providing these services is applying machine learning (ML) in order to generate structures via clustering and classification. Due to the intricate processes involved in ML, visual tools are needed to support designing and evaluating the ML pipelines. In this contribution, we propose a comprehensive tool that facilitates the analysis and design of ML-based clustering algorithms using multiple visualization features such as semantic zoom, glyphs, and histograms.","PeriodicalId":330748,"journal":{"name":"Proceedings of the 2018 International Conference on Advanced Visual Interfaces","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206505.3206556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the internet, massively heterogeneous data sources need to be understood and classified to provide suitable services to users such as content observation, data exploration, e-commerce, or adaptive learning environments. The key to providing these services is applying machine learning (ML) in order to generate structures via clustering and classification. Due to the intricate processes involved in ML, visual tools are needed to support designing and evaluating the ML pipelines. In this contribution, we propose a comprehensive tool that facilitates the analysis and design of ML-based clustering algorithms using multiple visualization features such as semantic zoom, glyphs, and histograms.
大数据景观:改进基于机器学习的聚类算法的可视化
有了互联网,大量异构数据源需要被理解和分类,以便为用户提供合适的服务,如内容观察、数据探索、电子商务或自适应学习环境。提供这些服务的关键是应用机器学习(ML),以便通过聚类和分类生成结构。由于机器学习涉及复杂的过程,需要可视化工具来支持机器学习管道的设计和评估。在这篇文章中,我们提出了一个全面的工具,可以使用多种可视化特征(如语义缩放、字形和直方图)促进基于ml的聚类算法的分析和设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信