Some structured matrix approximation problems

A. Shaw, R. Kumaresan
{"title":"Some structured matrix approximation problems","authors":"A. Shaw, R. Kumaresan","doi":"10.1109/ICASSP.1988.197104","DOIUrl":null,"url":null,"abstract":"An improved structured matrix approximation approach for simultaneous estimation of frequencies and wavenumbers from 2-D array data is proposed. A quasi-linear relationship of the error with the polynomial coefficients of both the spatial and temporal domains is derived. This leads to an iterative optimization of the error criterion simultaneously in both the domains. By performing simulations it is shown that the method is capable of resolving signals closely spaced in frequency and wavenumber at low SNR. Next, the extendibility of the method for least-squares fitting of Toeplitz/Hankel/data matrix to a given non-Toeplitz/Hankel/data matrix is also discussed.<<ETX>>","PeriodicalId":448544,"journal":{"name":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1988.197104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

An improved structured matrix approximation approach for simultaneous estimation of frequencies and wavenumbers from 2-D array data is proposed. A quasi-linear relationship of the error with the polynomial coefficients of both the spatial and temporal domains is derived. This leads to an iterative optimization of the error criterion simultaneously in both the domains. By performing simulations it is shown that the method is capable of resolving signals closely spaced in frequency and wavenumber at low SNR. Next, the extendibility of the method for least-squares fitting of Toeplitz/Hankel/data matrix to a given non-Toeplitz/Hankel/data matrix is also discussed.<>
若干结构化矩阵逼近问题
提出了一种改进的结构矩阵近似方法,用于同时估计二维阵列数据的频率和波数。推导了误差与时域和空域多项式系数的拟线性关系。这导致误差准则在两个域中同时迭代优化。仿真结果表明,该方法能够在低信噪比条件下分辨频率和波数间隔较近的信号。其次,讨论了Toeplitz/Hankel/数据矩阵的最小二乘拟合方法对给定非Toeplitz/Hankel/数据矩阵的可拓性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信