A linear programming method for exponential domination

Michael Dairyko, Michael Young
{"title":"A linear programming method for exponential\n domination","authors":"Michael Dairyko, Michael Young","doi":"10.1090/conm/759/15273","DOIUrl":null,"url":null,"abstract":"For a graph G, the set D ⊆V (G) is a porous exponential dominating set if 1 ≤ ∑ d∈D (2) 1−dist(d ,v) for every v ∈ V (G), where dist(d , v) denotes the length of the shortest d v path. The porous exponential dominating number of G, denoted γe (G), is the minimum cardinality of a porous exponential dominating set. For any graph G, a technique is derived to determine a lower bound for γe (G). Specifically for a grid graph H , linear programing is used to sharpen bound found through the lower bound technique. Lower and upper bounds are determined for the porous exponential domination number of the King Grid Kn , the Slant Grid Sn , and the n-dimensional hypercube Qn . AMS 2010 Subject Classification: Primary 05C69; Secondary 90C05","PeriodicalId":351002,"journal":{"name":"The Golden Anniversary Celebration of the\n National Association of Mathematicians","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Golden Anniversary Celebration of the\n National Association of Mathematicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/759/15273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For a graph G, the set D ⊆V (G) is a porous exponential dominating set if 1 ≤ ∑ d∈D (2) 1−dist(d ,v) for every v ∈ V (G), where dist(d , v) denotes the length of the shortest d v path. The porous exponential dominating number of G, denoted γe (G), is the minimum cardinality of a porous exponential dominating set. For any graph G, a technique is derived to determine a lower bound for γe (G). Specifically for a grid graph H , linear programing is used to sharpen bound found through the lower bound technique. Lower and upper bounds are determined for the porous exponential domination number of the King Grid Kn , the Slant Grid Sn , and the n-dimensional hypercube Qn . AMS 2010 Subject Classification: Primary 05C69; Secondary 90C05
指数控制的一种线性规划方法
对于图G,对于每个V∈V (G),当1≤∑D∈D(2) 1−dist(D, V)时,集合D≥V (G)是一个多孔指数支配集,其中dist(D, V)表示最短路径D V的长度。G的多孔指数支配数记为γe (G),是多孔指数支配集的最小基数。对于任何图G,导出了一种技术来确定γe (G)的下界。特别是对于网格图H,使用线性规划来锐化通过下界技术找到的界。确定了王网格Kn、斜网格Sn和n维超立方体Qn的孔隙指数支配数的下界和上界。AMS 2010学科分类:初级05C69;二次90 c05
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信