A Systematic Survey on Multi-document Text Summarization

A. Raj, Sudheep Elayidom, David Peter
{"title":"A Systematic Survey on Multi-document Text Summarization","authors":"A. Raj, Sudheep Elayidom, David Peter","doi":"10.30534/ijatcse/2021/111062021","DOIUrl":null,"url":null,"abstract":"Automatic text summarization is a technique of generating short and accurate summary of a longer text document. Text summarization can be classified based on the number of input documents (single document and multi-document summarization) and based on the characteristics of the summary generated (extractive and abstractive summarization). Multi-document summarization is an automatic process of creating relevant, informative and concise summary from a cluster of related documents. This paper does a detailed survey on the existing literature on the various approaches for text summarization. Few of the most popular approaches such as graph based, cluster based and deep learning-based summarization techniques are discussed here along with the evaluation metrics, which can provide an insight to the future researchers.","PeriodicalId":129636,"journal":{"name":"International Journal of Advanced Trends in Computer Science and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Trends in Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30534/ijatcse/2021/111062021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic text summarization is a technique of generating short and accurate summary of a longer text document. Text summarization can be classified based on the number of input documents (single document and multi-document summarization) and based on the characteristics of the summary generated (extractive and abstractive summarization). Multi-document summarization is an automatic process of creating relevant, informative and concise summary from a cluster of related documents. This paper does a detailed survey on the existing literature on the various approaches for text summarization. Few of the most popular approaches such as graph based, cluster based and deep learning-based summarization techniques are discussed here along with the evaluation metrics, which can provide an insight to the future researchers.
多文献文本摘要的系统研究
自动文本摘要是一种为较长的文本文档生成短小准确摘要的技术。文本摘要可以根据输入文档的数量(单文档和多文档摘要)和根据生成的摘要的特征(抽取和抽象摘要)进行分类。多文档摘要是从一组相关文档中自动生成相关的、信息丰富的、简洁的摘要的过程。本文对现有文献中关于文本摘要的各种方法进行了详细的综述。本文讨论了一些最流行的方法,如基于图的、基于聚类的和基于深度学习的总结技术,以及评估指标,为未来的研究人员提供了一个见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信