Semantic Grid Estimation with Occupancy Grids and Semantic Segmentation Networks

Ö. Erkent, Christian Wolf, C. Laugier
{"title":"Semantic Grid Estimation with Occupancy Grids and Semantic Segmentation Networks","authors":"Ö. Erkent, Christian Wolf, C. Laugier","doi":"10.1109/ICARCV.2018.8581180","DOIUrl":null,"url":null,"abstract":"We propose a method to estimate the semantic grid for an autonomous vehicle. The semantic grid is a 2D bird's eye view map where the grid cells contain semantic characteristics such as road, car, pedestrian, signage, etc. We obtain the semantic grid by fusing the semantic segmentation information and an occupancy grid computed by using a Bayesian filter technique. To compute the semantic information from a monocular RGB image, we integrate segmentation deep neural networks into our model. We use a deep neural network to learn the relation between the semantic information and the occupancy grid which can be trained end-to-end extending our previous work on semantic grids. Furthermore, we investigate the effect of using a conditional random field to refine the results. Finally, we test our method on two datasets and compare different architecture types for semantic segmentation. We perform the experiments on KITTI dataset and Inria-Chroma dataset.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We propose a method to estimate the semantic grid for an autonomous vehicle. The semantic grid is a 2D bird's eye view map where the grid cells contain semantic characteristics such as road, car, pedestrian, signage, etc. We obtain the semantic grid by fusing the semantic segmentation information and an occupancy grid computed by using a Bayesian filter technique. To compute the semantic information from a monocular RGB image, we integrate segmentation deep neural networks into our model. We use a deep neural network to learn the relation between the semantic information and the occupancy grid which can be trained end-to-end extending our previous work on semantic grids. Furthermore, we investigate the effect of using a conditional random field to refine the results. Finally, we test our method on two datasets and compare different architecture types for semantic segmentation. We perform the experiments on KITTI dataset and Inria-Chroma dataset.
基于占用网格和语义分割网络的语义网格估计
提出了一种自动驾驶汽车语义网格估计方法。语义网格是一种二维鸟瞰图,其中网格单元包含道路、汽车、行人、标牌等语义特征。我们通过融合语义分割信息和贝叶斯滤波计算的占用网格得到语义网格。为了计算单眼RGB图像的语义信息,我们将分割深度神经网络集成到我们的模型中。我们使用深度神经网络来学习语义信息和占用网格之间的关系,该网络可以端到端训练,扩展了我们之前在语义网格上的工作。此外,我们还研究了使用条件随机场来改进结果的效果。最后,我们在两个数据集上测试了我们的方法,并比较了语义分割的不同架构类型。我们在KITTI数据集和Inria-Chroma数据集上进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信