White-Box Performance-Influence Models: A Profiling and Learning Approach (Replication Package)

Max Weber, S. Apel, Norbert Siegmund
{"title":"White-Box Performance-Influence Models: A Profiling and Learning Approach (Replication Package)","authors":"Max Weber, S. Apel, Norbert Siegmund","doi":"10.1109/ICSE-Companion52605.2021.00107","DOIUrl":null,"url":null,"abstract":"These artifacts refer to the study and implementation of the paper 'White-Box Performance-Influence Models: A Profiling and Learning Approach'. In this document, we describe the idea and process of how to build white-box performance models for configurable software systems. Specifically, we describe the general steps and tools that we have used to implement our approach, the data we have obtained, and the evaluation setup. We further list the available artifacts, such as raw measurements, configurations, and scripts at our software heritage repository.","PeriodicalId":136929,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-Companion52605.2021.00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

These artifacts refer to the study and implementation of the paper 'White-Box Performance-Influence Models: A Profiling and Learning Approach'. In this document, we describe the idea and process of how to build white-box performance models for configurable software systems. Specifically, we describe the general steps and tools that we have used to implement our approach, the data we have obtained, and the evaluation setup. We further list the available artifacts, such as raw measurements, configurations, and scripts at our software heritage repository.
白盒性能影响模型:分析和学习方法(复制包)
这些工件参考了论文“白盒性能影响模型:分析和学习方法”的研究和实现。在本文中,我们描述了如何为可配置软件系统构建白盒性能模型的思想和过程。具体来说,我们将描述用于实现我们的方法的一般步骤和工具、我们获得的数据以及评估设置。我们进一步列出了可用的工件,例如软件遗产存储库中的原始度量、配置和脚本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信