A systolic rank revealing QR algorithm

F. Lorenzelli, K. Yao, T. Chan, P. Hansen
{"title":"A systolic rank revealing QR algorithm","authors":"F. Lorenzelli, K. Yao, T. Chan, P. Hansen","doi":"10.1109/ASAP.1992.218554","DOIUrl":null,"url":null,"abstract":"In many fields of signal and image processing control, and telecommunication there is much interest today in the numerical techniques offered by linear algebra. The singular value decomposition (SVD) is one of the techniques which have proven useful in many engineering applications, but unfortunately its computation is a costly procedure. The QR factorization (QRF) requires much less computational effort, but rank and null-space estimates are not necessarily reliable. This paper presents a version of rank revealing QR (RRQR) algorithm which is suited for implementation on a VLSI systolic array. The implementation of the RRQRF requires n(n+1)/2 processors and O(n) external buffers, for a problem of order n. The execution time for the algorithm is O(nr), where r is A's numerical rank.<<ETX>>","PeriodicalId":265438,"journal":{"name":"[1992] Proceedings of the International Conference on Application Specific Array Processors","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the International Conference on Application Specific Array Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.1992.218554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many fields of signal and image processing control, and telecommunication there is much interest today in the numerical techniques offered by linear algebra. The singular value decomposition (SVD) is one of the techniques which have proven useful in many engineering applications, but unfortunately its computation is a costly procedure. The QR factorization (QRF) requires much less computational effort, but rank and null-space estimates are not necessarily reliable. This paper presents a version of rank revealing QR (RRQR) algorithm which is suited for implementation on a VLSI systolic array. The implementation of the RRQRF requires n(n+1)/2 processors and O(n) external buffers, for a problem of order n. The execution time for the algorithm is O(nr), where r is A's numerical rank.<>
一种揭示QR算法的收缩秩
在信号和图像处理、控制以及电信等许多领域,现在人们对线性代数提供的数值技术非常感兴趣。奇异值分解(SVD)是一种已被证明在许多工程应用中很有用的技术之一,但不幸的是它的计算是一个昂贵的过程。QR分解(QRF)需要的计算量要少得多,但是秩和零空间估计不一定可靠。本文提出了一种适合在VLSI收缩阵列上实现的秩显示QR (RRQR)算法。对于n阶的问题,RRQRF的实现需要n(n+1)/2个处理器和O(n)个外部缓冲区。算法的执行时间为O(nr),其中r为a的数值排名。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信