Irish Sign Language Recognition Using Principal Component Analysis and Convolutional Neural Networks

Marlon Oliveira, Houssem Chatbri, S. Little, Ylva Ferstl, N. O’Connor, Alistair Sutherland
{"title":"Irish Sign Language Recognition Using Principal Component Analysis and Convolutional Neural Networks","authors":"Marlon Oliveira, Houssem Chatbri, S. Little, Ylva Ferstl, N. O’Connor, Alistair Sutherland","doi":"10.1109/DICTA.2017.8227451","DOIUrl":null,"url":null,"abstract":"Hand-shape recognition is an important problem in computer vision with significant societal impact. In this work, we introduce a new image dataset for Irish Sign Language (ISL) recognition and we compare between two recognition approaches. The dataset was collected by filming human subjects performing ISL hand-shapes and movements. Then, we extracted frames from the videos. This produced a total of 52,688 images for the 23 common hand- shapes from ISL. Afterwards, we filter the redundant images with an iterative image selection process that selects the images which keep the dataset diverse. For classification, we use Principal Component Analysis (PCA) with with K- Nearest Neighbours (k-NN) and Convolutional Neural Networks (CNN). We obtain a recognition accuracy of 0.95 for our PCA model and 0.99 for our CNN model. We show that image blurring improves PCA results to 0.98. In addition, we compare times for classification.","PeriodicalId":194175,"journal":{"name":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2017.8227451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Hand-shape recognition is an important problem in computer vision with significant societal impact. In this work, we introduce a new image dataset for Irish Sign Language (ISL) recognition and we compare between two recognition approaches. The dataset was collected by filming human subjects performing ISL hand-shapes and movements. Then, we extracted frames from the videos. This produced a total of 52,688 images for the 23 common hand- shapes from ISL. Afterwards, we filter the redundant images with an iterative image selection process that selects the images which keep the dataset diverse. For classification, we use Principal Component Analysis (PCA) with with K- Nearest Neighbours (k-NN) and Convolutional Neural Networks (CNN). We obtain a recognition accuracy of 0.95 for our PCA model and 0.99 for our CNN model. We show that image blurring improves PCA results to 0.98. In addition, we compare times for classification.
使用主成分分析和卷积神经网络的爱尔兰手语识别
手形识别是计算机视觉中的一个重要问题,具有重要的社会影响。在这项工作中,我们引入了一个新的爱尔兰手语(ISL)识别图像数据集,并比较了两种识别方法。该数据集是通过拍摄人类受试者进行ISL手部形状和动作来收集的。然后,我们从视频中提取帧。这产生了来自ISL的23种常见手形的总共52,688张图像。然后,我们使用迭代图像选择过程过滤冗余图像,选择保持数据集多样性的图像。对于分类,我们使用主成分分析(PCA)与K-近邻(K- nn)和卷积神经网络(CNN)。我们的PCA模型的识别精度为0.95,CNN模型的识别精度为0.99。我们发现图像模糊将PCA结果提高到0.98。此外,我们比较了分类的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信