Progressive Compression of Point-Sampled Models

M. Waschbüsch, M. Gross, Felix Eberhard, Edouard Lamboray, Stephan Würmlin
{"title":"Progressive Compression of Point-Sampled Models","authors":"M. Waschbüsch, M. Gross, Felix Eberhard, Edouard Lamboray, Stephan Würmlin","doi":"10.2312/SPBG/SPBG04/095-102","DOIUrl":null,"url":null,"abstract":"decomposition of the point set and thus easily allows for progressive decoding. Our method is generic in the sense that it can handle arbitrary point attributes using attribute-specific coding operations. Furthermore, no resampling of the model is needed and thus we do not introduce additional smoothing artifacts. We provide coding operators for the point position, normal and color. Particularly, by transforming the point positions into a local reference frame, we exploit the fact that all point samples are living on a surface. Our framework enables for compressing both geometry and appearance of the model in a unified manner. We show the performance of our framework on a diversity of point-based models.","PeriodicalId":136739,"journal":{"name":"Symposium on Point Based Graphics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Point Based Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/SPBG/SPBG04/095-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

decomposition of the point set and thus easily allows for progressive decoding. Our method is generic in the sense that it can handle arbitrary point attributes using attribute-specific coding operations. Furthermore, no resampling of the model is needed and thus we do not introduce additional smoothing artifacts. We provide coding operators for the point position, normal and color. Particularly, by transforming the point positions into a local reference frame, we exploit the fact that all point samples are living on a surface. Our framework enables for compressing both geometry and appearance of the model in a unified manner. We show the performance of our framework on a diversity of point-based models.
点采样模型的递进压缩
分解点集,从而很容易允许渐进解码。我们的方法是通用的,因为它可以使用特定于属性的编码操作来处理任意点属性。此外,不需要对模型进行重新采样,因此我们不引入额外的平滑伪影。我们提供点位置、法线和颜色的编码算子。特别地,通过将点位置转换为局部参考系,我们利用了所有点样本都生活在一个表面上的事实。我们的框架能够以统一的方式压缩模型的几何形状和外观。我们展示了我们的框架在多种基于点的模型上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信