Graph-Based Data Mining in Dynamic Networks: Empirical Comparison of Compression-Based and Frequency-Based Subgraph Mining

C. You, L. Holder, D. Cook
{"title":"Graph-Based Data Mining in Dynamic Networks: Empirical Comparison of Compression-Based and Frequency-Based Subgraph Mining","authors":"C. You, L. Holder, D. Cook","doi":"10.1109/ICDMW.2008.68","DOIUrl":null,"url":null,"abstract":"We propose a dynamic graph-based relational mining approach using graph-rewriting rules to learns patterns in networks that structurally change over time. A dynamic graph containing a sequence of graphs over time represents dynamic properties as well as structural properties of the network. Our approach discovers graph-rewriting rules, which describe the structural transformations between two sequential graphs over time, and also learns description rules that generalize over the discovered graph-rewriting rules. The discovered graph-rewriting rules show how networks change over time, and the description rules in the graph-rewriting rules show temporal patterns in the structural changes. We apply our approach to biological networks to understand how the biosystems change over time. Our compression-based discovery of the description rules is compared with the frequent subgraph mining approach using several evaluation metrics.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We propose a dynamic graph-based relational mining approach using graph-rewriting rules to learns patterns in networks that structurally change over time. A dynamic graph containing a sequence of graphs over time represents dynamic properties as well as structural properties of the network. Our approach discovers graph-rewriting rules, which describe the structural transformations between two sequential graphs over time, and also learns description rules that generalize over the discovered graph-rewriting rules. The discovered graph-rewriting rules show how networks change over time, and the description rules in the graph-rewriting rules show temporal patterns in the structural changes. We apply our approach to biological networks to understand how the biosystems change over time. Our compression-based discovery of the description rules is compared with the frequent subgraph mining approach using several evaluation metrics.
动态网络中基于图的数据挖掘:基于压缩和基于频率的子图挖掘的经验比较
我们提出了一种基于动态图的关系挖掘方法,使用图重写规则来学习网络中随时间结构变化的模式。包含随时间变化的一系列图的动态图表示网络的动态特性和结构特性。我们的方法发现了图重写规则,这些规则描述了两个顺序图之间随时间的结构转换,并且还学习了对发现的图重写规则进行概括的描述规则。发现的图重写规则显示了网络如何随时间变化,图重写规则中的描述规则显示了结构变化的时间模式。我们将我们的方法应用于生物网络,以了解生物系统如何随时间变化。我们基于压缩的描述规则发现与使用几个评估指标的频繁子图挖掘方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信