O. Varela Pedreira, H. Zahedmanesh, Y. Ding, I. Ciofi, K. Croes
{"title":"Challenges for Interconnect Reliability: From Element to System Level","authors":"O. Varela Pedreira, H. Zahedmanesh, Y. Ding, I. Ciofi, K. Croes","doi":"10.1145/3569052.3578909","DOIUrl":null,"url":null,"abstract":"The high current densities carried by the interconnects have a direct impact on the back-end-of-line (BEOL) reliability degradation as they locally increase the temperature by Joule heating, and they lead to drift in the metal atoms. Local increase in temperature due to Joule heating will lead to thermal gradients along the interconnects inducing degradation through thermomigration. As the power density of the chip increases, thermal gradients may become a major reliability concern for scaled Cu interconnects. Therefore, it is of utmost relevance to fundamentally understand the impact of thermal gradients in metal migration. Our studies show that by using a combined modelling approach and a dedicated test structure we can assess the local temperatures and temperature gradients profiles. Moreover, with long-term experiments, we are able to successfully generate voids at the location of highest temperature gradients. Additionally, the main consequence of scaling the Cu interconnects is the dramatic drop of EM lifetime (Jmax). Currently the experimentally obtained EM parameters are used at system design level to set the current limits through the interconnect networks. However, this approach is very simplistic and neglects the benefits provided by the redundancy and interconnectivity from the network. Our studies by using a system-level physics-based EM simulation framework which can determine the EM induced IR drop at the standard cell level, show that the circuit reliability margins of the power delivery network (PDN) can be further relaxed.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3578909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The high current densities carried by the interconnects have a direct impact on the back-end-of-line (BEOL) reliability degradation as they locally increase the temperature by Joule heating, and they lead to drift in the metal atoms. Local increase in temperature due to Joule heating will lead to thermal gradients along the interconnects inducing degradation through thermomigration. As the power density of the chip increases, thermal gradients may become a major reliability concern for scaled Cu interconnects. Therefore, it is of utmost relevance to fundamentally understand the impact of thermal gradients in metal migration. Our studies show that by using a combined modelling approach and a dedicated test structure we can assess the local temperatures and temperature gradients profiles. Moreover, with long-term experiments, we are able to successfully generate voids at the location of highest temperature gradients. Additionally, the main consequence of scaling the Cu interconnects is the dramatic drop of EM lifetime (Jmax). Currently the experimentally obtained EM parameters are used at system design level to set the current limits through the interconnect networks. However, this approach is very simplistic and neglects the benefits provided by the redundancy and interconnectivity from the network. Our studies by using a system-level physics-based EM simulation framework which can determine the EM induced IR drop at the standard cell level, show that the circuit reliability margins of the power delivery network (PDN) can be further relaxed.