Data-parallel finite-state machines

Todd Mytkowicz, Madan Musuvathi, Wolfram Schulte
{"title":"Data-parallel finite-state machines","authors":"Todd Mytkowicz, Madan Musuvathi, Wolfram Schulte","doi":"10.1145/2541940.2541988","DOIUrl":null,"url":null,"abstract":"A finite-state machine (FSM) is an important abstraction for solving several problems, including regular-expression matching, tokenizing text, and Huffman decoding. FSM computations typically involve data-dependent iterations with unpredictable memory-access patterns making them difficult to parallelize. This paper describes a parallel algorithm for FSMs that breaks dependences across iterations by efficiently enumerating transitions from all possible states on each input symbol. This allows the algorithm to utilize various sources of data parallelism available on modern hardware, including vector instructions and multiple processors/cores. For instance, on benchmarks from three FSM applications: regular expressions, Huffman decoding, and HTML tokenization, the parallel algorithm achieves up to a 3x speedup over optimized sequential baselines on a single core, and linear speedups up to 21x on 8 cores.","PeriodicalId":128805,"journal":{"name":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541940.2541988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

A finite-state machine (FSM) is an important abstraction for solving several problems, including regular-expression matching, tokenizing text, and Huffman decoding. FSM computations typically involve data-dependent iterations with unpredictable memory-access patterns making them difficult to parallelize. This paper describes a parallel algorithm for FSMs that breaks dependences across iterations by efficiently enumerating transitions from all possible states on each input symbol. This allows the algorithm to utilize various sources of data parallelism available on modern hardware, including vector instructions and multiple processors/cores. For instance, on benchmarks from three FSM applications: regular expressions, Huffman decoding, and HTML tokenization, the parallel algorithm achieves up to a 3x speedup over optimized sequential baselines on a single core, and linear speedups up to 21x on 8 cores.
数据并行有限状态机
有限状态机(FSM)是解决正则表达式匹配、文本标记化和霍夫曼解码等问题的重要抽象。FSM计算通常涉及数据依赖的迭代,具有不可预测的内存访问模式,这使得它们难以并行化。本文描述了一种FSMs并行算法,该算法通过有效地枚举每个输入符号上所有可能状态的转换来打破迭代之间的依赖。这允许该算法利用现代硬件上可用的各种数据并行性来源,包括矢量指令和多处理器/内核。例如,在三个FSM应用程序(正则表达式、Huffman解码和HTML标记化)的基准测试中,并行算法在单核上比优化的顺序基线实现了高达3倍的加速,在8核上实现了高达21倍的线性加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信