{"title":"Modeling and analysis of factors of size effect in micro-cutting: The tool geometry and the depth of cutting","authors":"X. Jing, B. Lin, D. W. Zhang","doi":"10.1109/3M-NANO.2013.6737440","DOIUrl":null,"url":null,"abstract":"Based on the finite element approach and the strain gradient (SG) theory, this paper produced a study on factors of size effect and minimum cutting thickness phenomenon in the micro-cutting process. Mechanisms of micro-cutting focusing on its characteristics that include size effect, tool edge radius and minimum cutting thickness has been studied. A new constitutive relationship based on SG theory is formulated to model the size effect of material properties at micro-scale. The new constitutive was implanted into the FEM, and size effect was investigated. From the result of simulation, it is indicated that size effect in micro-cutting could be well formulated by SG theory. The curve of material properties is approached to curve of JC with the depth cutting increased; when the rake angle is increased, the size effect is more obvious. The tool edge radius has a significant influence on the size effect. Result show that the cause of the minimum chip thickness is the tool edge radius.","PeriodicalId":120368,"journal":{"name":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2013.6737440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Based on the finite element approach and the strain gradient (SG) theory, this paper produced a study on factors of size effect and minimum cutting thickness phenomenon in the micro-cutting process. Mechanisms of micro-cutting focusing on its characteristics that include size effect, tool edge radius and minimum cutting thickness has been studied. A new constitutive relationship based on SG theory is formulated to model the size effect of material properties at micro-scale. The new constitutive was implanted into the FEM, and size effect was investigated. From the result of simulation, it is indicated that size effect in micro-cutting could be well formulated by SG theory. The curve of material properties is approached to curve of JC with the depth cutting increased; when the rake angle is increased, the size effect is more obvious. The tool edge radius has a significant influence on the size effect. Result show that the cause of the minimum chip thickness is the tool edge radius.