A diffusion-based distributed em algorithm for density estimation in wireless sensor networks

S. S. Pereira, A. Pagès-Zamora, Roberto López-Valcarce
{"title":"A diffusion-based distributed em algorithm for density estimation in wireless sensor networks","authors":"S. S. Pereira, A. Pagès-Zamora, Roberto López-Valcarce","doi":"10.1109/ICASSP.2013.6638501","DOIUrl":null,"url":null,"abstract":"Distributed implementations of the Expectation-Maximization (EM) algorithm reported in literature have been proposed for applications to solve specific problems. In general, a primary requirement to derive a distributed solution is that the structure of the centralized version enables the computation involving global information in a distributed fashion. This paper treats the problem of distributed estimation of Gaussian densities by means of the EM algorithm in wireless sensor networks using diffusion strategies, where the information is gradually diffused across the network for the computation of the global functions. The low-complexity implementation presented here is based on a two time scale operation for information averaging and diffusion. The convergence to a fixed point of the centralized solution has been studied and the appealing results motivates our choice for this model. Numerical examples provided show that the performance of the distributed EM is, in practice, equal to that of the centralized scheme.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Distributed implementations of the Expectation-Maximization (EM) algorithm reported in literature have been proposed for applications to solve specific problems. In general, a primary requirement to derive a distributed solution is that the structure of the centralized version enables the computation involving global information in a distributed fashion. This paper treats the problem of distributed estimation of Gaussian densities by means of the EM algorithm in wireless sensor networks using diffusion strategies, where the information is gradually diffused across the network for the computation of the global functions. The low-complexity implementation presented here is based on a two time scale operation for information averaging and diffusion. The convergence to a fixed point of the centralized solution has been studied and the appealing results motivates our choice for this model. Numerical examples provided show that the performance of the distributed EM is, in practice, equal to that of the centralized scheme.
一种基于扩散的无线传感器网络密度估计分布式em算法
文献中报道的期望最大化(EM)算法的分布式实现已经被提出用于解决特定问题的应用。通常,派生分布式解决方案的一个主要要求是集中式版本的结构支持以分布式方式进行涉及全局信息的计算。本文采用扩散策略处理无线传感器网络中基于EM算法的高斯密度分布估计问题,其中信息在网络中逐渐扩散以计算全局函数。本文提出的低复杂度实现基于两个时间尺度的信息平均和扩散操作。研究了集中解收敛到不动点的问题,其结果激励了我们对该模型的选择。数值算例表明,在实际应用中,分布式电磁方案的性能与集中式方案相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信