Successive Approximation Algorithm for Complex Number Magnitude and Argument Computation

P. Kubinec, J. Púc̆ik, M. Hagara, E. Cocherová, O. Ondrácek
{"title":"Successive Approximation Algorithm for Complex Number Magnitude and Argument Computation","authors":"P. Kubinec, J. Púc̆ik, M. Hagara, E. Cocherová, O. Ondrácek","doi":"10.1109/RADIOELEKTRONIKA49387.2020.9092432","DOIUrl":null,"url":null,"abstract":"Determination of complex number modulus and argument is commonly encountered task in digital signal processing. According to definition, this task requires evaluation of square root and inverse tangent functions. When computing hardware resources are limited, e.g. in real-time applications, an approximation by basic arithmetic and logical operations are of interest. We propose method for modulus approximation that uses addition, scaling and comparison, and provides also argument information. At each additional level of our algorithm, modulus approximation error decreases by factor of 4 and argument error by factor of 8.","PeriodicalId":131117,"journal":{"name":"2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Determination of complex number modulus and argument is commonly encountered task in digital signal processing. According to definition, this task requires evaluation of square root and inverse tangent functions. When computing hardware resources are limited, e.g. in real-time applications, an approximation by basic arithmetic and logical operations are of interest. We propose method for modulus approximation that uses addition, scaling and comparison, and provides also argument information. At each additional level of our algorithm, modulus approximation error decreases by factor of 4 and argument error by factor of 8.
复数大小的逐次逼近算法及参数计算
复数模和参数的确定是数字信号处理中经常遇到的问题。根据定义,这个任务需要求平方根和正切反函数的值。当计算硬件资源有限时,例如在实时应用中,通过基本的算术和逻辑运算进行近似是有意义的。我们提出了一种使用加法、缩放和比较的模数近似方法,并提供了参数信息。在我们算法的每一个附加级别上,模近似误差减少4倍,参数误差减少8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信