Best of Both Worlds: High Performance Interactive and Batch Launching

C. Byun, J. Kepner, W. Arcand, David Bestor, Bill Bergeron, V. Gadepally, Michael Houle, M. Hubbell, Michael Jones, Andrew Kirby, Anna Klein, P. Michaleas, Lauren Milechin, J. Mullen, Andrew Prout, Antonio Rosa, S. Samsi, Charles Yee, A. Reuther
{"title":"Best of Both Worlds: High Performance Interactive and Batch Launching","authors":"C. Byun, J. Kepner, W. Arcand, David Bestor, Bill Bergeron, V. Gadepally, Michael Houle, M. Hubbell, Michael Jones, Andrew Kirby, Anna Klein, P. Michaleas, Lauren Milechin, J. Mullen, Andrew Prout, Antonio Rosa, S. Samsi, Charles Yee, A. Reuther","doi":"10.1109/HPEC43674.2020.9286142","DOIUrl":null,"url":null,"abstract":"Rapid launch of thousands of jobs is essential for effective interactive supercomputing, big data analysis, and AI algorithm development. Achieving thousands of launches per second has required hardware to be available to receive these jobs. This paper presents a novel preemptive approach to implement “spot” jobs on MIT SuperCloud systems allowing the resources to be fully utilized for both long running batch jobs while still providing fast launch for interactive jobs. The new approach separates the job preemption and scheduling operations and can achieve 100 times faster performance in the scheduling of a job with preemption when compared to using the standard scheduler-provided automatic preemption-based capability. The results demonstrate that the new approach can schedule interactive jobs preemptively at a performance comparable to when the required computing resources are idle and available. The spot job capability can be deployed without disrupting the interactive user experience while increasing the overall system utilization.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Rapid launch of thousands of jobs is essential for effective interactive supercomputing, big data analysis, and AI algorithm development. Achieving thousands of launches per second has required hardware to be available to receive these jobs. This paper presents a novel preemptive approach to implement “spot” jobs on MIT SuperCloud systems allowing the resources to be fully utilized for both long running batch jobs while still providing fast launch for interactive jobs. The new approach separates the job preemption and scheduling operations and can achieve 100 times faster performance in the scheduling of a job with preemption when compared to using the standard scheduler-provided automatic preemption-based capability. The results demonstrate that the new approach can schedule interactive jobs preemptively at a performance comparable to when the required computing resources are idle and available. The spot job capability can be deployed without disrupting the interactive user experience while increasing the overall system utilization.
两全其美:高性能交互和批量启动
快速推出数千个工作岗位对于有效的交互式超级计算、大数据分析和人工智能算法开发至关重要。要实现每秒数千次的发射,需要有硬件来接收这些任务。本文提出了一种在MIT SuperCloud系统上实现“spot”作业的新颖的抢占式方法,允许资源被充分利用于长时间运行的批处理作业,同时仍然为交互式作业提供快速启动。新方法将作业抢占和调度操作分开,与使用标准调度器提供的基于自动抢占的功能相比,在调度具有抢占的作业时可以实现100倍的性能提升。结果表明,该方法能够以与所需计算资源空闲和可用时相当的性能抢占调度交互式作业。可以在不破坏交互式用户体验的情况下部署现场作业功能,同时提高整体系统利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信