Measuring GPU-accelerated parallel SVM performance using large datasets for multi-class machine learning problem

Muhamad Abdul Hay Bin Sulaiman, A. Suliman, A. Ahmad
{"title":"Measuring GPU-accelerated parallel SVM performance using large datasets for multi-class machine learning problem","authors":"Muhamad Abdul Hay Bin Sulaiman, A. Suliman, A. Ahmad","doi":"10.1109/ICIMU.2014.7066648","DOIUrl":null,"url":null,"abstract":"This paper presents performance evaluation of GPU-accelerated Support Vector Machines (SVMs) using large datasets. Although SVMs algorithm is popular among machine learning researchers and data mining practitioners, its computational time is too long and impractical for large datasets due to its complex Quadratic Programming (QP) solver. The result shows that using GPU-accelerated SVMs can significantly reduce computational time for training phase of SVMs and it can be a viable solution for any project that require real-time forecasting output.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents performance evaluation of GPU-accelerated Support Vector Machines (SVMs) using large datasets. Although SVMs algorithm is popular among machine learning researchers and data mining practitioners, its computational time is too long and impractical for large datasets due to its complex Quadratic Programming (QP) solver. The result shows that using GPU-accelerated SVMs can significantly reduce computational time for training phase of SVMs and it can be a viable solution for any project that require real-time forecasting output.
基于多类机器学习问题的大数据集gpu加速并行支持向量机性能测量
本文提出了基于大数据集的gpu加速支持向量机(svm)的性能评估方法。尽管支持向量机算法在机器学习研究者和数据挖掘从业者中很受欢迎,但由于其复杂的二次规划(QP)求解器,其计算时间太长,对于大型数据集来说不切实际。结果表明,使用gpu加速的支持向量机可以显著减少支持向量机训练阶段的计算时间,对于任何需要实时预测输出的项目都是可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信