Shrimp-growth Estimation Based on ResNeXt for an Automatic Feeding-tray Lifting System Used in Shrimp Farming

Chanon Nontarit, T. Kondo, Warakorn Khamkaew, Jaroenmit Woradet, Jessada Karnjana
{"title":"Shrimp-growth Estimation Based on ResNeXt for an Automatic Feeding-tray Lifting System Used in Shrimp Farming","authors":"Chanon Nontarit, T. Kondo, Warakorn Khamkaew, Jaroenmit Woradet, Jessada Karnjana","doi":"10.1109/iSAI-NLP56921.2022.9960243","DOIUrl":null,"url":null,"abstract":"The shrimp agriculturists monitor shrimp growth by observing the size of shrimps in the feeding tray with the naked eye. This approach is time-consuming and needs experienced workers. This study proposes an automatic approach for estimating shrimp size using images. A mask region-based convolutional neural network with ResNeXt was trained to detect shrimps in an image. The detection model achieved an overall precision of 74.45%, recall of 72.20%, Fl score of 73.31 %, and AP of 69.04%. The two unique methods were proposed for estimating shrimp size. The first method achieved a mean absolute error of 0.30 cm and a mean absolute percentage error of 3.97%. The second method achieved a mean absolute error of 0.35 cm and a mean absolute percentage error of 4.59%. The proposed system achieved an automatic shrimp size estimation from the image and provided helpful information for agriculturists.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The shrimp agriculturists monitor shrimp growth by observing the size of shrimps in the feeding tray with the naked eye. This approach is time-consuming and needs experienced workers. This study proposes an automatic approach for estimating shrimp size using images. A mask region-based convolutional neural network with ResNeXt was trained to detect shrimps in an image. The detection model achieved an overall precision of 74.45%, recall of 72.20%, Fl score of 73.31 %, and AP of 69.04%. The two unique methods were proposed for estimating shrimp size. The first method achieved a mean absolute error of 0.30 cm and a mean absolute percentage error of 3.97%. The second method achieved a mean absolute error of 0.35 cm and a mean absolute percentage error of 4.59%. The proposed system achieved an automatic shrimp size estimation from the image and provided helpful information for agriculturists.
基于ResNeXt的对虾养殖自动投料盘提升系统对虾生长估算
虾农通过肉眼观察饲养盘中虾的大小来监测虾的生长。这种方法耗时且需要有经验的工人。本研究提出了一种利用图像自动估计虾大小的方法。利用ResNeXt对基于掩模区域的卷积神经网络进行训练,检测图像中的虾类。该检测模型的总体准确率为74.45%,召回率为72.20%,Fl评分为73.31%,AP评分为69.04%。提出了两种独特的估算虾大小的方法。第一种方法的平均绝对误差为0.30 cm,平均绝对百分比误差为3.97%。第二种方法的平均绝对误差为0.35 cm,平均绝对百分比误差为4.59%。该系统实现了对虾大小的自动估计,为农学家提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信