Superior Selective Reporting-Based Spectrum Sensing in Energy Harvesting-Aided HCRNs

Rajalekshmi Kishore, Sanjeev Gurugopinath, S. Muhaidat, P. Sofotasios, K. Mezher, O. Dobre, N. Al-Dhahir
{"title":"Superior Selective Reporting-Based Spectrum Sensing in Energy Harvesting-Aided HCRNs","authors":"Rajalekshmi Kishore, Sanjeev Gurugopinath, S. Muhaidat, P. Sofotasios, K. Mezher, O. Dobre, N. Al-Dhahir","doi":"10.1109/COMMNET.2019.8742385","DOIUrl":null,"url":null,"abstract":"In the present contribution we investigate the performance of superior selective reporting (SSR) for cooperative spectrum sensing in an energy harvesting-enabled multi-channel heterogeneous cognitive radio network (HCRN). To this end, we first analyze the throughput of the SSR and the optimal conventional cooperative sensing (CCS). Then, we formulate a nonlinear integer programming problem to find a throughput-optimal set of spectrum sensors scheduled to sense a particular channel, under primary user (PU) interference and energy harvesting constraints. In this context, we derive a solution based on the cross entropy (CE) method, and compare its performance with the exhaustive-search method counterpart. Furthermore, we study the tradeoff between the channel available time and detection accuracy of the SSR and CCS schemes. It is shown that this inherent tradeoff is between the channel available time and the detection accuracy. Furthermore, it is shown that as the number of spectrum sensors increases, the channel available time turns out to be the system's limiting factor in HCRNs.","PeriodicalId":274754,"journal":{"name":"2019 International Conference on Advanced Communication Technologies and Networking (CommNet)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Communication Technologies and Networking (CommNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMNET.2019.8742385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present contribution we investigate the performance of superior selective reporting (SSR) for cooperative spectrum sensing in an energy harvesting-enabled multi-channel heterogeneous cognitive radio network (HCRN). To this end, we first analyze the throughput of the SSR and the optimal conventional cooperative sensing (CCS). Then, we formulate a nonlinear integer programming problem to find a throughput-optimal set of spectrum sensors scheduled to sense a particular channel, under primary user (PU) interference and energy harvesting constraints. In this context, we derive a solution based on the cross entropy (CE) method, and compare its performance with the exhaustive-search method counterpart. Furthermore, we study the tradeoff between the channel available time and detection accuracy of the SSR and CCS schemes. It is shown that this inherent tradeoff is between the channel available time and the detection accuracy. Furthermore, it is shown that as the number of spectrum sensors increases, the channel available time turns out to be the system's limiting factor in HCRNs.
能量收集辅助hcrn中基于优越选择性报告的频谱传感
在目前的贡献中,我们研究了在能量收集支持的多通道异构认知无线电网络(HCRN)中用于合作频谱感知的优越选择报告(SSR)的性能。为此,我们首先分析了SSR和最优传统协同感知(CCS)的吞吐量。然后,我们制定了一个非线性整数规划问题,在主用户(PU)干扰和能量收集约束下,找到一组调度到特定信道的吞吐量最优频谱传感器。在此背景下,我们推导了一种基于交叉熵(CE)方法的解决方案,并将其与穷尽搜索方法的性能进行了比较。此外,我们还研究了SSR和CCS方案在信道可用时间和检测精度之间的权衡。结果表明,这种固有的权衡是在信道可用时间和检测精度之间。此外,随着频谱传感器数量的增加,信道可用时间成为HCRNs中系统的限制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信