{"title":"POMDP Library Optimizing Over Exploration and Exploitation in Robotic Localization, Mapping, and Planning","authors":"J. Annan, Akram Alghanmi, M. Silaghi","doi":"10.5038/fdqp3242","DOIUrl":null,"url":null,"abstract":"Localization, mapping, and planning are critical in autonomous robots operating in uncertain environments and in continuous and discrete domains. High-quality probabilistic models for a complex robot depend heavily on details from its environment, involving multiple parameters. However, there is a lack of accurate probabilistic models for existing robots that can handle reasonably the challenges posed by real applications. For most robots, actions are highly non-deterministic. Furthermore, there is a lack of general software packages applicable to new scenarios. Specifically, we propose a POMDP library for optimal planning and localization given new available models, and dedicated to optimize over exploration and exploitation tradeoffs.","PeriodicalId":165319,"journal":{"name":"Proceedings of the 35th Florida Conference on Recent Advances in Robotics","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th Florida Conference on Recent Advances in Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5038/fdqp3242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Localization, mapping, and planning are critical in autonomous robots operating in uncertain environments and in continuous and discrete domains. High-quality probabilistic models for a complex robot depend heavily on details from its environment, involving multiple parameters. However, there is a lack of accurate probabilistic models for existing robots that can handle reasonably the challenges posed by real applications. For most robots, actions are highly non-deterministic. Furthermore, there is a lack of general software packages applicable to new scenarios. Specifically, we propose a POMDP library for optimal planning and localization given new available models, and dedicated to optimize over exploration and exploitation tradeoffs.