Sotiria Fytraki, Evangelos Vlachos, Yusuf Onur Koçberber, B. Falsafi, Boris Grot
{"title":"FADE: A programmable filtering accelerator for instruction-grain monitoring","authors":"Sotiria Fytraki, Evangelos Vlachos, Yusuf Onur Koçberber, B. Falsafi, Boris Grot","doi":"10.1109/HPCA.2014.6835922","DOIUrl":null,"url":null,"abstract":"Instruction-grain monitoring is a powerful approach that enables a wide spectrum of bug-finding tools. As existing software approaches incur prohibitive runtime overhead, researchers have focused on hardware support for instruction-grain monitoring. A recurring theme in recent work is the use of hardware-assisted filtering so as to elide costly software analysis. This work generalizes and extends prior point solutions into a programmable filtering accelerator affording vast flexibility and at-speed event filtering. The pipelined microarchitecture of the accelerator affords a peak filtering rate of one application event per cycle, which suffices to keep up with an aggressive OoO core running the monitored application. A unique feature of the proposed design is the ability to dynamically resolve dependencies between unfilterable events and subsequent events, eliminating data-dependent stalls and maximizing accelerator's performance. Our evaluation results show a monitoring slowdown of just 1.2-1.8x across a diverse set of monitoring tools.","PeriodicalId":164587,"journal":{"name":"2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2014.6835922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Instruction-grain monitoring is a powerful approach that enables a wide spectrum of bug-finding tools. As existing software approaches incur prohibitive runtime overhead, researchers have focused on hardware support for instruction-grain monitoring. A recurring theme in recent work is the use of hardware-assisted filtering so as to elide costly software analysis. This work generalizes and extends prior point solutions into a programmable filtering accelerator affording vast flexibility and at-speed event filtering. The pipelined microarchitecture of the accelerator affords a peak filtering rate of one application event per cycle, which suffices to keep up with an aggressive OoO core running the monitored application. A unique feature of the proposed design is the ability to dynamically resolve dependencies between unfilterable events and subsequent events, eliminating data-dependent stalls and maximizing accelerator's performance. Our evaluation results show a monitoring slowdown of just 1.2-1.8x across a diverse set of monitoring tools.