Active sampling for detecting irrelevant features

S. Veeramachaneni, E. Olivetti, P. Avesani
{"title":"Active sampling for detecting irrelevant features","authors":"S. Veeramachaneni, E. Olivetti, P. Avesani","doi":"10.1145/1143844.1143965","DOIUrl":null,"url":null,"abstract":"The general approach for automatically driving data collection using information from previously acquired data is called active learning. Traditional active learning addresses the problem of choosing the unlabeled examples for which the class labels are queried with the goal of learning a classifier. In contrast we address the problem of active feature sampling for detecting useless features. We propose a strategy to actively sample the values of new features on class-labeled examples, with the objective of feature relevance assessment. We derive an active feature sampling algorithm from an information theoretic and statistical formulation of the problem. We present experimental results on synthetic, UCI and real world datasets to demonstrate that our active sampling algorithm can provide accurate estimates of feature relevance with lower data acquisition costs than random sampling and other previously proposed sampling algorithms.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The general approach for automatically driving data collection using information from previously acquired data is called active learning. Traditional active learning addresses the problem of choosing the unlabeled examples for which the class labels are queried with the goal of learning a classifier. In contrast we address the problem of active feature sampling for detecting useless features. We propose a strategy to actively sample the values of new features on class-labeled examples, with the objective of feature relevance assessment. We derive an active feature sampling algorithm from an information theoretic and statistical formulation of the problem. We present experimental results on synthetic, UCI and real world datasets to demonstrate that our active sampling algorithm can provide accurate estimates of feature relevance with lower data acquisition costs than random sampling and other previously proposed sampling algorithms.
主动采样检测不相关的特征
使用先前获取的数据中的信息自动驱动数据收集的一般方法称为主动学习。传统的主动学习解决的问题是选择未标记的样本,并为其查询类标签,以学习分类器。相反,我们解决了主动特征采样的问题,以检测无用的特征。我们提出了一种主动采样新特征值的策略,以特征相关性评估为目标。我们从信息理论和统计公式中推导出一种主动特征采样算法。我们展示了在合成、UCI和真实世界数据集上的实验结果,以证明我们的主动采样算法可以以更低的数据采集成本提供准确的特征相关性估计,而不是随机采样和其他先前提出的采样算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信