Tyler's estimator performance analysis

I. Soloveychik, A. Wiesel
{"title":"Tyler's estimator performance analysis","authors":"I. Soloveychik, A. Wiesel","doi":"10.1109/ICASSP.2015.7179061","DOIUrl":null,"url":null,"abstract":"This paper analyzes the performance of Tyler's M-estimator of the scatter matrix in elliptical populations. We focus on non-asymptotic performance analysis of Tyler's estimator. Given n samples of dimension p <; n, we show that the squared Frobenius norm of the error of the inverse estimator is proportional to p2/(1-c2)2n with high probability, where c is the coherence coefficient of the properly scaled estimator. Under additional group symmetry conditions we improve the obtained bound, utilizing the inherent sparsity properties of group symmetry.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7179061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper analyzes the performance of Tyler's M-estimator of the scatter matrix in elliptical populations. We focus on non-asymptotic performance analysis of Tyler's estimator. Given n samples of dimension p <; n, we show that the squared Frobenius norm of the error of the inverse estimator is proportional to p2/(1-c2)2n with high probability, where c is the coherence coefficient of the properly scaled estimator. Under additional group symmetry conditions we improve the obtained bound, utilizing the inherent sparsity properties of group symmetry.
泰勒估计器性能分析
本文分析了椭圆总体中散点矩阵的泰勒m估计的性能。重点研究了泰勒估计量的非渐近性能分析。给定n个维数p <;n时,我们证明了逆估计量误差的平方Frobenius范数与p2/(1-c2)2n成高概率比例,其中c为适当缩放估计量的相干系数。在附加群对称条件下,利用群对称固有的稀疏性,改进了所得到的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信