Radial basis function neural network for regulation of nonlinear systems

I.N. Kostanic, F. M. Ham
{"title":"Radial basis function neural network for regulation of nonlinear systems","authors":"I.N. Kostanic, F. M. Ham","doi":"10.1109/SECON.1996.510101","DOIUrl":null,"url":null,"abstract":"A large class of nonlinear discrete systems with accessible states can be controlled through feedback linearization. This paper develops a practical algorithm for state feedback control design using radial basis function neural networks (RBFNN). Linear least-squares is coupled with a Gram-Schmidt orthogonalization procedure to perform size reduction of the neural networks. An example of regulating a nonlinear plant is included to illustrate the effectiveness of the proposed algorithm.","PeriodicalId":338029,"journal":{"name":"Proceedings of SOUTHEASTCON '96","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SOUTHEASTCON '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1996.510101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A large class of nonlinear discrete systems with accessible states can be controlled through feedback linearization. This paper develops a practical algorithm for state feedback control design using radial basis function neural networks (RBFNN). Linear least-squares is coupled with a Gram-Schmidt orthogonalization procedure to perform size reduction of the neural networks. An example of regulating a nonlinear plant is included to illustrate the effectiveness of the proposed algorithm.
用于非线性系统调节的径向基函数神经网络
一类具有可达状态的非线性离散系统可以通过反馈线性化进行控制。本文提出了一种实用的径向基函数神经网络(RBFNN)状态反馈控制设计算法。将线性最小二乘与Gram-Schmidt正交化相结合,对神经网络进行尺寸缩减。最后以非线性对象的控制为例说明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信