Adversarial Discriminative Domain Adaptation and Transformers for EEG-based Cross-Subject Emotion Recognition

Shadi Sartipi, M. Çetin
{"title":"Adversarial Discriminative Domain Adaptation and Transformers for EEG-based Cross-Subject Emotion Recognition","authors":"Shadi Sartipi, M. Çetin","doi":"10.1109/NER52421.2023.10123837","DOIUrl":null,"url":null,"abstract":"Decoding the human emotional states based on electroencephalography (EEG) in affective brain-computer interfaces (BCI) is a great challenge due to inter-subject variability. Existing methods mostly use large amounts of EEG data of each new subject to calibrate the algorithm, which could be time-consuming and not user-oriented. To address this issue, we propose a combination of using transformers (TF) and adversarial discriminative domain adaptation (ADDA) to perform the emotion recognition task in a cross-subject manner. TF principally relies on the attention mechanism. Our proposed approach performs scaledot product attention on the feature-channel aspect of EEG data to improve the spatial features. Then, the temporal transforming is applied to get the global discriminative representations from the time component. Moreover, ADDA aims to minimize the discrepancy of EEG data from various subjects. We evaluate the proposed ADDA-TF on the publicly available DEAP dataset and demonstrate the improvements it provides on low versus high valence and arousal classification.","PeriodicalId":201841,"journal":{"name":"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER52421.2023.10123837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Decoding the human emotional states based on electroencephalography (EEG) in affective brain-computer interfaces (BCI) is a great challenge due to inter-subject variability. Existing methods mostly use large amounts of EEG data of each new subject to calibrate the algorithm, which could be time-consuming and not user-oriented. To address this issue, we propose a combination of using transformers (TF) and adversarial discriminative domain adaptation (ADDA) to perform the emotion recognition task in a cross-subject manner. TF principally relies on the attention mechanism. Our proposed approach performs scaledot product attention on the feature-channel aspect of EEG data to improve the spatial features. Then, the temporal transforming is applied to get the global discriminative representations from the time component. Moreover, ADDA aims to minimize the discrepancy of EEG data from various subjects. We evaluate the proposed ADDA-TF on the publicly available DEAP dataset and demonstrate the improvements it provides on low versus high valence and arousal classification.
基于脑电图的跨主体情感识别的对抗性判别域自适应和变换
情感脑机接口(BCI)中基于脑电图(EEG)的人类情绪状态解码是一个巨大的挑战,因为主体间的可变性。现有方法大多使用大量新受试者的脑电数据来校准算法,耗时长且不面向用户。为了解决这个问题,我们提出了一种结合使用变形器(TF)和对抗性判别域自适应(ADDA)的方法来执行跨主题的情感识别任务。TF主要依赖于注意机制。我们提出的方法在脑电数据的特征通道方面进行尺度点积关注,以改善空间特征。然后,利用时间变换得到时间分量的全局判别表示。此外,ADDA的目的是尽量减少不同被试脑电信号的差异。我们在公开可用的DEAP数据集上评估了所提出的ADDA-TF,并展示了它在低效价与高效价和唤醒分类方面的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信