Interdependent Attribute Interference Fuzzy Neural Network-Based Alzheimer Disease Evaluation

Syed Thouheed Ahmed, M. S. Koti, Muthukumaran Venkatesan, Rose Bindu Joseph, S. S. Kumar
{"title":"Interdependent Attribute Interference Fuzzy Neural Network-Based Alzheimer Disease Evaluation","authors":"Syed Thouheed Ahmed, M. S. Koti, Muthukumaran Venkatesan, Rose Bindu Joseph, S. S. Kumar","doi":"10.4018/ijfsa.306275","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease is associated with a fragmental protein deposits termed as biomarkers. These biomarkers are studied and researched with various techniques in improving the performance and accuracy of diagnosis. In this research article, a technique is proposed to extract the attribute of brain MRI datasets. The attributes are processed and computed using a neural networking technique to categorize attribute mapping based on Interdependent Attribute Interference (IAI). The categorized data is teamed with a fuzzy logic to provide a reliable computation rule in decision making. The proposed technique has outperformed the accuracy of disease evaluation and diagnosis with a categorization sensitivity of 89.27% and an accuracy of 93.91%.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.306275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Alzheimer’s disease is associated with a fragmental protein deposits termed as biomarkers. These biomarkers are studied and researched with various techniques in improving the performance and accuracy of diagnosis. In this research article, a technique is proposed to extract the attribute of brain MRI datasets. The attributes are processed and computed using a neural networking technique to categorize attribute mapping based on Interdependent Attribute Interference (IAI). The categorized data is teamed with a fuzzy logic to provide a reliable computation rule in decision making. The proposed technique has outperformed the accuracy of disease evaluation and diagnosis with a categorization sensitivity of 89.27% and an accuracy of 93.91%.
基于相互依存属性干扰模糊神经网络的阿尔茨海默病评价
阿尔茨海默病与一种被称为生物标志物的碎片状蛋白质沉积有关。为了提高诊断的性能和准确性,对这些生物标志物进行了各种技术的研究和研究。本文提出了一种提取脑MRI数据集属性的方法。使用神经网络技术对属性进行处理和计算,并基于相互依赖属性干扰(IAI)对属性映射进行分类。将分类后的数据与模糊逻辑进行组合,为决策提供可靠的计算规则。该方法的分类灵敏度为89.27%,准确率为93.91%,优于疾病评估和诊断的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信