C_4-face-magic toroidal labelings on C_m × C_n

S. Curran, R. Low, S. C. Locke
{"title":"C_4-face-magic toroidal labelings on C_m × C_n","authors":"S. Curran, R. Low, S. C. Locke","doi":"10.26493/2590-9770.1368.F37","DOIUrl":null,"url":null,"abstract":"For a graph G = (V, E) naturally embedded in the torus, let ℱ(G) denote the set of faces of G. Then, G is called a Cn-face-magic toroidal graph if there exists a bijection f : V(G) → {1, 2, …, |V(G)|} such that for every F ∈ ℱ(G) with F ≅ Cn, the sum of all the vertex labels along Cn is a constant S. Let xv = f(v) for all v ∈ V(G). We call {xv : v ∈ V(G)} a Cn-face-magic toroidal labeling on G. We show that, for all m, n ≥ 2, Cm × Cn admits a C4-face-magic toroidal labeling if and only if either m = 2, or n = 2, or both m and n are even. We say that a C4-face-magic toroidal labeling {xi, j : (i, j) ∈ V(C2m × C2n)} on C2m × C2n is antipodal balanced if $x_{i,j} + x_{i+m,j+n} = \\tfrac{1}{2} S$, for all (i, j) ∈ V(C2m × C2n). We show that there exists an antipodal balanced C4-face-magic toroidal labeling on C2m × C2n if and only if the parity of m and n are the same. Furthermore, when both m and n are even, an antipodal balanced C4-face-magic toroidal labeling on C2m × C2n is both row-sum balanced and column-sum balanced. In addition, when m = n is even, an antipodal balanced C4-face-magic toroidal labeling on C2n × C2n is diagonal-sum balanced.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1368.F37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G = (V, E) naturally embedded in the torus, let ℱ(G) denote the set of faces of G. Then, G is called a Cn-face-magic toroidal graph if there exists a bijection f : V(G) → {1, 2, …, |V(G)|} such that for every F ∈ ℱ(G) with F ≅ Cn, the sum of all the vertex labels along Cn is a constant S. Let xv = f(v) for all v ∈ V(G). We call {xv : v ∈ V(G)} a Cn-face-magic toroidal labeling on G. We show that, for all m, n ≥ 2, Cm × Cn admits a C4-face-magic toroidal labeling if and only if either m = 2, or n = 2, or both m and n are even. We say that a C4-face-magic toroidal labeling {xi, j : (i, j) ∈ V(C2m × C2n)} on C2m × C2n is antipodal balanced if $x_{i,j} + x_{i+m,j+n} = \tfrac{1}{2} S$, for all (i, j) ∈ V(C2m × C2n). We show that there exists an antipodal balanced C4-face-magic toroidal labeling on C2m × C2n if and only if the parity of m and n are the same. Furthermore, when both m and n are even, an antipodal balanced C4-face-magic toroidal labeling on C2m × C2n is both row-sum balanced and column-sum balanced. In addition, when m = n is even, an antipodal balanced C4-face-magic toroidal labeling on C2n × C2n is diagonal-sum balanced.
C_m × C_n上的c_4面幻环面标记
对于自然嵌入环面中的图G = (V, E),设V(G)表示G的面集,则如果存在一个双射f: V(G)→{1,2,…,|V(G)|},使得对于每一个f∈V(G),对于f∈V(G),沿Cn的所有顶点标记的和是一个常数s,则G称为n-面-奇异环面图。我们称{xv: v∈v (G)}为G上的一个c4 -面幻环面标记。我们证明,对于所有m, n≥2,Cm × Cn承认c4 -面幻环面标记当且仅当m = 2,或n = 2,或m和n均为偶数。我们说一个C4-face-magic环形标签{xi, j: (i, j)∈V (C2m×C2n)}在C2m×C2n映平衡如果美元间{i, j} +间{i + m j + n} = \ tfrac{1}{2}新元,所有(i, j)∈V (C2m×C2n)。证明了在C2m × C2n上存在对映平衡c4 -面幻环标记当且仅当m和n的宇称相等。此外,当m和n均为偶数时,C2m × C2n上的对映平衡c4 -面幻环面标记是行和平衡的,也是列和平衡的。此外,当m = n为偶时,C2n × C2n上的对映平衡c4 -面幻环面标记是对角和平衡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信