AN ENHANCED FREQUENT PATTERN GROWTH BASED ON MAP REDUCE FOR MINING ASSOCIATION RULES

Arkan A. G. Al-Hamodi, Song Lu, Y. Alsalhi
{"title":"AN ENHANCED FREQUENT PATTERN GROWTH BASED ON MAP REDUCE FOR MINING ASSOCIATION RULES","authors":"Arkan A. G. Al-Hamodi, Song Lu, Y. Alsalhi","doi":"10.5121/IJDKP.2016.6202","DOIUrl":null,"url":null,"abstract":"In mining frequent itemsets, one of most important algorithm is FP-growth. FP-growth proposes an algorithm to compress information needed for mining frequent itemsets in FP-tree and recursively constructs FP-trees to find all frequent itemsets. In this paper, we propose the EFP-growth (enhanced FPgrowth) algorithm to achieve the quality of FP-growth. Our proposed method implemented the EFPGrowth based on MapReduce framework using Hadoop approach. New method has high achieving performance compared with the basic FP-Growth. The EFP-growth it can work with the large datasets to discovery frequent patterns in a transaction database. Based on our method, the execution time under different minimum supports is decreased..","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2016.6202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In mining frequent itemsets, one of most important algorithm is FP-growth. FP-growth proposes an algorithm to compress information needed for mining frequent itemsets in FP-tree and recursively constructs FP-trees to find all frequent itemsets. In this paper, we propose the EFP-growth (enhanced FPgrowth) algorithm to achieve the quality of FP-growth. Our proposed method implemented the EFPGrowth based on MapReduce framework using Hadoop approach. New method has high achieving performance compared with the basic FP-Growth. The EFP-growth it can work with the large datasets to discovery frequent patterns in a transaction database. Based on our method, the execution time under different minimum supports is decreased..
一种基于映射约简的增强频繁模式增长关联规则挖掘方法
在频繁项集挖掘中,最重要的算法之一是FP-growth算法。FP-growth提出了一种算法,通过压缩FP-tree中挖掘频繁项集所需的信息,递归地构造FP-tree来查找所有频繁项集。本文提出了EFP-growth (enhanced FP-growth)算法来实现FP-growth的质量。本文提出的方法采用Hadoop方法实现了基于MapReduce框架的EFPGrowth。与基本FP-Growth相比,新方法具有较高的成活率。efp增长可以与大型数据集一起工作,以发现事务数据库中的频繁模式。基于该方法,在不同最小支持度下的执行时间缩短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信