Exchange coupling in magnetic superlattices

H. Zabel
{"title":"Exchange coupling in magnetic superlattices","authors":"H. Zabel","doi":"10.1117/12.300656","DOIUrl":null,"url":null,"abstract":"Artificial magnetic superlattices composed of successive ferromagnetic and paramagnetic layers have received much attention in recent years due to their scientific and technological relevance. While the strength of the exchange coupling and the oscillation period depend on the details of the Fermi surfaces involved, the overall features appear universal. More complex couplings are observed for magnetic superlattices with chromium spacer layer. This is due to the intrinsic spin density wave of Cr. Extensive synchrotron and neutron scattering experiments have now unraveled the Neel- state of thin Cr layers and proximity effects between Fe and Cr, elucidating the mutual interdependence of Cr spin structure and Fe exchange coupling. In Co/Cr superlattices the structural mismatch between hcp Co and bcc Cr adds another complexity, which affects strongly the magnetic anisotropy. Both, the current status and understanding of the exchange coupling in Fe/Cr(001) and Co/Cr(001) superlattices is briefly reviewed here.","PeriodicalId":362287,"journal":{"name":"Thin Film Physics and Applications","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.300656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial magnetic superlattices composed of successive ferromagnetic and paramagnetic layers have received much attention in recent years due to their scientific and technological relevance. While the strength of the exchange coupling and the oscillation period depend on the details of the Fermi surfaces involved, the overall features appear universal. More complex couplings are observed for magnetic superlattices with chromium spacer layer. This is due to the intrinsic spin density wave of Cr. Extensive synchrotron and neutron scattering experiments have now unraveled the Neel- state of thin Cr layers and proximity effects between Fe and Cr, elucidating the mutual interdependence of Cr spin structure and Fe exchange coupling. In Co/Cr superlattices the structural mismatch between hcp Co and bcc Cr adds another complexity, which affects strongly the magnetic anisotropy. Both, the current status and understanding of the exchange coupling in Fe/Cr(001) and Co/Cr(001) superlattices is briefly reviewed here.
磁超晶格中的交换耦合
由连续的铁磁层和顺磁层组成的人工磁超晶格由于其科学和技术上的相关性,近年来受到了广泛的关注。虽然交换耦合的强度和振荡周期取决于所涉及的费米表面的细节,但总体特征似乎是普遍的。在具有铬间隔层的磁性超晶格中观察到更复杂的耦合。大量的同步加速器和中子散射实验现在已经揭示了薄Cr层的尼尔态和Fe与Cr之间的邻近效应,阐明了Cr自旋结构和Fe交换耦合的相互依存关系。在Co/Cr超晶格中,hcp Co和bcc Cr之间的结构失配增加了另一种复杂性,这强烈影响了磁各向异性。本文简要综述了Fe/Cr(001)和Co/Cr(001)超晶格交换耦合的研究现状和认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信