Braid group action on the module category of quantum affine algebras

M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park
{"title":"Braid group action on the module category of quantum\n affine algebras","authors":"M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park","doi":"10.3792/PJAA.97.003","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{g}_0$ be a simple Lie algebra of type ADE and let $U'_q(\\mathfrak{g})$ be the corresponding untwisted quantum affine algebra. We show that there exists an action of the braid group $B(\\mathfrak{g}_0)$ on the quantum Grothendieck ring $K_t(\\mathfrak{g})$ of Hernandez-Leclerc's category $C_{\\mathfrak{g}}^0$. Focused on the case of type $A_{N-1}$, we construct a family of monoidal autofunctors $\\{\\mathscr{S}_i\\}_{i\\in \\mathbb{Z}}$ on a localization $T_N$ of the category of finite-dimensional graded modules over the quiver Hecke algebra of type $A_{\\infty}$. Under an isomorphism between the Grothendieck ring $K(T_N)$ of $T_N$ and the quantum Grothendieck ring $K_t({A^{(1)}_{N-1}})$, the functors $\\{\\mathscr{S}_i\\}_{1\\le i\\le N-1}$ recover the action of the braid group $B(A_{N-1})$. We investigate further properties of these functors.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3792/PJAA.97.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Let $\mathfrak{g}_0$ be a simple Lie algebra of type ADE and let $U'_q(\mathfrak{g})$ be the corresponding untwisted quantum affine algebra. We show that there exists an action of the braid group $B(\mathfrak{g}_0)$ on the quantum Grothendieck ring $K_t(\mathfrak{g})$ of Hernandez-Leclerc's category $C_{\mathfrak{g}}^0$. Focused on the case of type $A_{N-1}$, we construct a family of monoidal autofunctors $\{\mathscr{S}_i\}_{i\in \mathbb{Z}}$ on a localization $T_N$ of the category of finite-dimensional graded modules over the quiver Hecke algebra of type $A_{\infty}$. Under an isomorphism between the Grothendieck ring $K(T_N)$ of $T_N$ and the quantum Grothendieck ring $K_t({A^{(1)}_{N-1}})$, the functors $\{\mathscr{S}_i\}_{1\le i\le N-1}$ recover the action of the braid group $B(A_{N-1})$. We investigate further properties of these functors.
量子仿射代数模范畴上的辫群作用
设$\mathfrak{g}_0$为ADE型的简单李代数,设$U'_q(\mathfrak{g})$为对应的非扭曲量子仿射代数。我们证明了编织群$B(\mathfrak{g}_0)$在Hernandez-Leclerc范畴$C_{\mathfrak{g}}^0$的量子Grothendieck环$K_t(\mathfrak{g})$上存在一个作用。在类型为$A_{N-1}$的情况下,我们在类型为$A_{\infty}$的quiver Hecke代数上有限维梯度模类的一个局部化$T_N$上构造了一类单形自函子$\{\mathscr{S}_i\}_{i\in \mathbb{Z}}$。在$T_N$的Grothendieck环$K(T_N)$与量子Grothendieck环$K_t({A^{(1)}_{N-1}})$之间的同构下,函子$\{\mathscr{S}_i\}_{1\le i\le N-1}$恢复了编织群$B(A_{N-1})$的作用。我们进一步研究了这些函子的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信