Channel Analytics for V2X Communication

M. Careem, A. Dutta
{"title":"Channel Analytics for V2X Communication","authors":"M. Careem, A. Dutta","doi":"10.1109/5GWF.2018.8516984","DOIUrl":null,"url":null,"abstract":"Recommending channel characteristics for V2X communication has the distinct advantage of pre-conditioning the waveform at the transmitter to match the expected fading profile. The difficulty lies in extracting an accurate model for the channel, especially if the underlying variables are uncorrelated, unobserved and immeasurable. Our work implements this prescience by assimilating the Channel State Information (CSI), obtained as a feedback from vehicles, over time and space to adjust the modulation vectors such that the channel impairments are significantly diminished at the receiver, improving the Bit Error Rate (BER) by 96% for higher order modulations. To account for the multivariate, non-stationary V2X channel, a tensor decomposition and completion approach is used to mitigate the effects of sparsity and noise in the CSI measurements.","PeriodicalId":440445,"journal":{"name":"2018 IEEE 5G World Forum (5GWF)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF.2018.8516984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommending channel characteristics for V2X communication has the distinct advantage of pre-conditioning the waveform at the transmitter to match the expected fading profile. The difficulty lies in extracting an accurate model for the channel, especially if the underlying variables are uncorrelated, unobserved and immeasurable. Our work implements this prescience by assimilating the Channel State Information (CSI), obtained as a feedback from vehicles, over time and space to adjust the modulation vectors such that the channel impairments are significantly diminished at the receiver, improving the Bit Error Rate (BER) by 96% for higher order modulations. To account for the multivariate, non-stationary V2X channel, a tensor decomposition and completion approach is used to mitigate the effects of sparsity and noise in the CSI measurements.
V2X通信的信道分析
推荐V2X通信的信道特性具有明显的优势,可以预先调节发射机的波形以匹配预期的衰落轮廓。难点在于如何为通道提取一个准确的模型,特别是当潜在变量是不相关的、未观察到的和不可测量的。我们的工作通过吸收信道状态信息(CSI)来实现这一先见之明,该信息作为从车辆获得的反馈,随着时间和空间的推移来调整调制矢量,从而在接收器上显著减少信道损伤,将高阶调制的误码率(BER)提高96%。为了考虑多变量、非平稳的V2X通道,使用张量分解和补全方法来减轻CSI测量中的稀疏性和噪声的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信