GC* -tree: a generic index for perceptual similarity search

S. Sheu, Jia-Rong Wu
{"title":"GC* -tree: a generic index for perceptual similarity search","authors":"S. Sheu, Jia-Rong Wu","doi":"10.1109/ITRE.2005.1503092","DOIUrl":null,"url":null,"abstract":"Similarity search is an intuitive, easy-to-use function, indispensable for MM DBMS. Myriad heuristics were exploited to faithfully represent MM objects for efficient search engine designs. However, the demand to incorporate more representative features for generality incurs great challenge to search speed improvement. A simple linear scan can often outperform many elaborate designs. Particularly, most distance metrics used barely certify perceptual similarity due to contamination of irrelevant features. Alternative non-metric distance functions to selectively choose a dynamic proper subset of holistic features, despite better perceptual accuracy offered, would create non-uniformity against indexing. In this paper, we propose a generic index structure and its supportive search algorithm to attain both accuracy and speed for perceptual similarity search. The idea is to confine the true perceptual distance within the range specified by the upper/lower bound functions we developed. This allows effective pruning and dramatic search time reduction in our solution, which achieves 44% performance gain over linear scan.","PeriodicalId":338920,"journal":{"name":"ITRE 2005. 3rd International Conference on Information Technology: Research and Education, 2005.","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITRE 2005. 3rd International Conference on Information Technology: Research and Education, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITRE.2005.1503092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Similarity search is an intuitive, easy-to-use function, indispensable for MM DBMS. Myriad heuristics were exploited to faithfully represent MM objects for efficient search engine designs. However, the demand to incorporate more representative features for generality incurs great challenge to search speed improvement. A simple linear scan can often outperform many elaborate designs. Particularly, most distance metrics used barely certify perceptual similarity due to contamination of irrelevant features. Alternative non-metric distance functions to selectively choose a dynamic proper subset of holistic features, despite better perceptual accuracy offered, would create non-uniformity against indexing. In this paper, we propose a generic index structure and its supportive search algorithm to attain both accuracy and speed for perceptual similarity search. The idea is to confine the true perceptual distance within the range specified by the upper/lower bound functions we developed. This allows effective pruning and dramatic search time reduction in our solution, which achieves 44% performance gain over linear scan.
GC* -tree:用于感知相似性搜索的通用索引
相似度搜索是一种直观、易于使用的功能,是MM数据库管理系统不可缺少的。为了高效的搜索引擎设计,无数的启发式算法被用来忠实地表示MM对象。然而,为了实现通用性,需要包含更多具有代表性的特征,这对提高搜索速度提出了巨大的挑战。一个简单的线性扫描往往能胜过许多复杂的设计。特别是,由于不相关特征的污染,大多数距离度量几乎不能证明感知相似性。选择性地选择整体特征的动态适当子集的替代非度量距离函数,尽管提供了更好的感知准确性,但会对索引产生不一致性。在本文中,我们提出了一种通用索引结构及其支持的搜索算法,以获得感知相似度搜索的准确性和速度。这个想法是将真正的感知距离限制在我们开发的上限/下限函数指定的范围内。这允许在我们的解决方案中进行有效的修剪和显着的搜索时间减少,这比线性扫描实现了44%的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信