Brief Announcement: Scheduling Parallelizable Jobs Online to Maximize Throughput

Kunal Agrawal, Jing Li, Kefu Lu, Benjamin Moseley
{"title":"Brief Announcement: Scheduling Parallelizable Jobs Online to Maximize Throughput","authors":"Kunal Agrawal, Jing Li, Kefu Lu, Benjamin Moseley","doi":"10.1145/3087556.3087590","DOIUrl":null,"url":null,"abstract":"We consider scheduling parallelizable jobs online to maximize the throughput or profit of the schedule. A set of n jobs arrive online and each job Ji has an associated function pi(t), the profit obtained for finishing job Ji at time t. Each job has its own arbitrary non-increasing profit function. We consider the case where each job is a parallel job that can be represented as a directed acyclic graph (DAG). We give the first non-trivial results for the profit scheduling problem for DAG jobs showing O(1)-competitive algorithms using resource augmentation.","PeriodicalId":162994,"journal":{"name":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087556.3087590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider scheduling parallelizable jobs online to maximize the throughput or profit of the schedule. A set of n jobs arrive online and each job Ji has an associated function pi(t), the profit obtained for finishing job Ji at time t. Each job has its own arbitrary non-increasing profit function. We consider the case where each job is a parallel job that can be represented as a directed acyclic graph (DAG). We give the first non-trivial results for the profit scheduling problem for DAG jobs showing O(1)-competitive algorithms using resource augmentation.
简短公告:在线调度可并行作业以最大化吞吐量
我们考虑在线调度可并行作业以最大化调度的吞吐量或利润。一组n个作业到达在线,每个作业Ji都有一个关联函数pi(t), pi(t)表示在时间t完成作业Ji所获得的利润。每个作业都有自己的任意不增加的利润函数。我们考虑这样一种情况:每个作业都是并行作业,可以用有向无环图(DAG)表示。我们给出了DAG作业利润调度问题的第一个非平凡结果,显示了使用资源增强的O(1)竞争算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信