On linear filtering capabilities of 1-D CNNs with minimum-size templates

R. Matei, L. Goras
{"title":"On linear filtering capabilities of 1-D CNNs with minimum-size templates","authors":"R. Matei, L. Goras","doi":"10.1109/NEUREL.2002.1057981","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the linear filtering capabilities of the standard cellular neural network in the general case of non-symmetric templates. We refer to 1D Cellular Neural Networks (CNN's) with templates of minimum size (1/spl times/3). A detailed analysis of the spatial transfer function is made, emphasizing the useful filtering functions that can be obtained. We present an approach from a designer's point of view, establishing a set of relations to be satisfied by the template parameters, in order to obtain the desired filtering function with specified characteristics - central frequency, bandwidth, selectivity. Symmetric templates are treated as a particular case. For each type of filtering the characteristics are shown and simulation results are presented as well.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we investigate the linear filtering capabilities of the standard cellular neural network in the general case of non-symmetric templates. We refer to 1D Cellular Neural Networks (CNN's) with templates of minimum size (1/spl times/3). A detailed analysis of the spatial transfer function is made, emphasizing the useful filtering functions that can be obtained. We present an approach from a designer's point of view, establishing a set of relations to be satisfied by the template parameters, in order to obtain the desired filtering function with specified characteristics - central frequency, bandwidth, selectivity. Symmetric templates are treated as a particular case. For each type of filtering the characteristics are shown and simulation results are presented as well.
最小模板下一维cnn的线性滤波能力
本文研究了标准细胞神经网络在一般非对称模板情况下的线性滤波能力。我们指的是具有最小尺寸模板(1/spl times/3)的1D细胞神经网络(CNN)。对空间传递函数进行了详细的分析,强调了可以得到的有用的滤波函数。我们提出了一种从设计者的角度出发的方法,即建立一组由模板参数所满足的关系,以获得具有特定特征(中心频率、带宽、选择性)的期望滤波函数。对称模板被视为一种特殊情况。给出了每种滤波的特性,并给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信