Cognitive stress recognition

Taylor K. Calibo, Justin A. Blanco, S. Firebaugh
{"title":"Cognitive stress recognition","authors":"Taylor K. Calibo, Justin A. Blanco, S. Firebaugh","doi":"10.1109/I2MTC.2013.6555658","DOIUrl":null,"url":null,"abstract":"This work explores using a low-cost electroencephalography (EEG) headset to quantify the human response to stressed and non-stressed states. We used a Stroop color-word interference test to elicit a mild stress response in 18 test subjects while recording scalp EEG. EEG signals were analyzed using an algorithm that computed the root mean square voltage in the beta, alpha, and theta bands immediately following the presentation of the Stroop stimuli. These features were then used as inputs to logistic regression and k-nearest neighbor classifiers. Results showed that there was a median accuracy of 73.96% for classifying mental state using the O1 sensor on the Emotiv headset.","PeriodicalId":432388,"journal":{"name":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2013.6555658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

This work explores using a low-cost electroencephalography (EEG) headset to quantify the human response to stressed and non-stressed states. We used a Stroop color-word interference test to elicit a mild stress response in 18 test subjects while recording scalp EEG. EEG signals were analyzed using an algorithm that computed the root mean square voltage in the beta, alpha, and theta bands immediately following the presentation of the Stroop stimuli. These features were then used as inputs to logistic regression and k-nearest neighbor classifiers. Results showed that there was a median accuracy of 73.96% for classifying mental state using the O1 sensor on the Emotiv headset.
认知压力识别
这项工作探索使用低成本脑电图(EEG)耳机来量化人类对压力和非压力状态的反应。在记录头皮脑电图的同时,采用Stroop色词干扰测试诱发18名被试的轻度应激反应。在Stroop刺激出现后,使用计算β、α和θ波段均方根电压的算法分析脑电图信号。然后将这些特征用作逻辑回归和k近邻分类器的输入。结果表明,使用Emotiv头戴式耳机上的O1传感器对精神状态进行分类的中位数准确率为73.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信