Multiple sensor fault diagnosis for non-linear and dynamic system by evolving approach

M. El-Koujok, M. Benammar, N. Meskin, M. Al-Naemi, R. Langari
{"title":"Multiple sensor fault diagnosis for non-linear and dynamic system by evolving approach","authors":"M. El-Koujok, M. Benammar, N. Meskin, M. Al-Naemi, R. Langari","doi":"10.1109/PHM.2012.6228969","DOIUrl":null,"url":null,"abstract":"Reliability of sensor measurement is vital to assure the performance of complex and nonlinear industrial operation. In this paper, the problem of designing and development of a data-driven multiple sensor fault detection and isolation (MSFDI) algorithm for nonlinear processes is investigated. The proposed scheme is based on an evolving multi-Takagi Sugeno framework in which each sensor output is estimated using a model derived from the available input-output measurement. Our proposed MSFDI algorithm is applied to continuously stirred tank reactor sensor fault detection and isolation. Simulation results demonstrate and validate the performance capabilities of our proposed MSFDI algorithm.","PeriodicalId":444815,"journal":{"name":"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM.2012.6228969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Reliability of sensor measurement is vital to assure the performance of complex and nonlinear industrial operation. In this paper, the problem of designing and development of a data-driven multiple sensor fault detection and isolation (MSFDI) algorithm for nonlinear processes is investigated. The proposed scheme is based on an evolving multi-Takagi Sugeno framework in which each sensor output is estimated using a model derived from the available input-output measurement. Our proposed MSFDI algorithm is applied to continuously stirred tank reactor sensor fault detection and isolation. Simulation results demonstrate and validate the performance capabilities of our proposed MSFDI algorithm.
基于演化方法的非线性动态系统多传感器故障诊断
传感器测量的可靠性是保证复杂、非线性工业运行性能的关键。本文研究了非线性过程中数据驱动的多传感器故障检测与隔离算法的设计与开发问题。所提出的方案基于不断发展的multi-Takagi Sugeno框架,其中每个传感器输出使用从可用输入输出测量中导出的模型进行估计。将本文提出的MSFDI算法应用于连续搅拌釜式反应器传感器故障检测与隔离。仿真结果验证了所提出的MSFDI算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信