A Scalable Design of Multi-Bit Ferroelectric Content Addressable Memory for Data-Centric Computing

Chao Li, F. Müller, T. Ali, R. Olivo, M. Imani, Shan Deng, Cheng Zhuo, T. Kämpfe, Xunzhao Yin, K. Ni
{"title":"A Scalable Design of Multi-Bit Ferroelectric Content Addressable Memory for Data-Centric Computing","authors":"Chao Li, F. Müller, T. Ali, R. Olivo, M. Imani, Shan Deng, Cheng Zhuo, T. Kämpfe, Xunzhao Yin, K. Ni","doi":"10.1109/IEDM13553.2020.9372119","DOIUrl":null,"url":null,"abstract":"Content addressable memory (CAM) is widely used for data-centric computing for its massive parallelism and pattern matching capability. Though the CAM density has been improved by replacing the area-consuming SRAM with compact emerging nonvolatile memories (NVMs), its implementation has been limited to single level cell. To further boost the CAM density for data-intensive workloads, exploiting the multi-level cell NVMs is highly desirable. In this work, we demonstrate: 1) a novel scalable and ultra-compact multi-bit 2FeFET1T CAM design based on two ferroelectric FETs (FeFETs) and one transistor; 2) successful operations of the proposed CAM cell and array in experiment based on 2-bit FeFET memory, and sufficient sensing margin for an 1x32 CAM array through statistical analysis considering the device variation; 3) 22.6x area per bit saving compared with SRAM CAM; 4) 16x search speedup, and 29x reduction in energy delay product over the SRAM CAM approach in accelerating a database query processing application.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9372119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Content addressable memory (CAM) is widely used for data-centric computing for its massive parallelism and pattern matching capability. Though the CAM density has been improved by replacing the area-consuming SRAM with compact emerging nonvolatile memories (NVMs), its implementation has been limited to single level cell. To further boost the CAM density for data-intensive workloads, exploiting the multi-level cell NVMs is highly desirable. In this work, we demonstrate: 1) a novel scalable and ultra-compact multi-bit 2FeFET1T CAM design based on two ferroelectric FETs (FeFETs) and one transistor; 2) successful operations of the proposed CAM cell and array in experiment based on 2-bit FeFET memory, and sufficient sensing margin for an 1x32 CAM array through statistical analysis considering the device variation; 3) 22.6x area per bit saving compared with SRAM CAM; 4) 16x search speedup, and 29x reduction in energy delay product over the SRAM CAM approach in accelerating a database query processing application.
面向数据中心计算的多比特铁电内容可寻址存储器的可扩展设计
内容可寻址内存(CAM)因其巨大的并行性和模式匹配能力而广泛用于以数据为中心的计算。尽管用紧凑的新兴非易失性存储器(nvm)取代了消耗面积的SRAM,提高了CAM密度,但其实现仅限于单级单元。为了进一步提高数据密集型工作负载的CAM密度,利用多级单元nvm是非常可取的。在这项工作中,我们展示了:1)基于两个铁电场效应管(fefet)和一个晶体管的新型可扩展和超紧凑的多比特2FeFET1T CAM设计;2)基于2位FeFET存储器的CAM单元和阵列在实验中成功运行,考虑器件变化,通过统计分析获得了1x32 CAM阵列足够的传感余量;3)与SRAM CAM相比,每比特面积节省22.6倍;4)在加速数据库查询处理应用中,与SRAM CAM方法相比,搜索速度提高16倍,能量延迟积降低29倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信