An adaptive VLSI neural network chip

R. Zaman, D. Wunsch
{"title":"An adaptive VLSI neural network chip","authors":"R. Zaman, D. Wunsch","doi":"10.1109/ICNN.1994.374523","DOIUrl":null,"url":null,"abstract":"Presents an adaptive neural network, which uses multiplying-digital-to-analog converters (MDACs) as synaptic weights. The chip takes advantage of digital processing to learn weights, but retains the parallel asynchronous behavior of analog systems, since part of the neuron functions are analog. The authors use MDAC units of 6 bit accuracy for this chip. Hebbian learning is employed, which is very attractive for electronic neural networks since it only uses local information in adapting weights.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Presents an adaptive neural network, which uses multiplying-digital-to-analog converters (MDACs) as synaptic weights. The chip takes advantage of digital processing to learn weights, but retains the parallel asynchronous behavior of analog systems, since part of the neuron functions are analog. The authors use MDAC units of 6 bit accuracy for this chip. Hebbian learning is employed, which is very attractive for electronic neural networks since it only uses local information in adapting weights.<>
一种自适应VLSI神经网络芯片
提出了一种使用多重数模转换器(MDACs)作为突触权值的自适应神经网络。该芯片利用数字处理来学习权重,但保留了模拟系统的并行异步行为,因为部分神经元功能是模拟的。该芯片采用6位精度的MDAC单元。采用了Hebbian学习,这对电子神经网络非常有吸引力,因为它只使用局部信息来适应权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信