Augmented text character proposals and convolutional neural networks for text spotting from scene images

Alessandro Zamberletti, I. Gallo, L. Noce
{"title":"Augmented text character proposals and convolutional neural networks for text spotting from scene images","authors":"Alessandro Zamberletti, I. Gallo, L. Noce","doi":"10.1109/ACPR.2015.7486493","DOIUrl":null,"url":null,"abstract":"In this work we propose a novel method for text spotting from scene images based on augmented Multi-resolution Maximally Stable Extremal Regions and Convolutional Neural Networks. The goal of this work is augmenting text character proposals to maximize their coverage rate over text elements in scene images, to obtain satisfying text detection rates without the need of using very deep architectures nor large amount of training data. Using simple and fast geometric transformations on multi-resolution proposals our system achieves good results for several challenging datasets while also being computationally efficient to train and test on a desktop computer.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this work we propose a novel method for text spotting from scene images based on augmented Multi-resolution Maximally Stable Extremal Regions and Convolutional Neural Networks. The goal of this work is augmenting text character proposals to maximize their coverage rate over text elements in scene images, to obtain satisfying text detection rates without the need of using very deep architectures nor large amount of training data. Using simple and fast geometric transformations on multi-resolution proposals our system achieves good results for several challenging datasets while also being computationally efficient to train and test on a desktop computer.
增强文本字符建议和卷积神经网络在场景图像文本识别中的应用
在这项工作中,我们提出了一种基于增强多分辨率最大稳定极值区域和卷积神经网络的场景图像文本识别新方法。这项工作的目标是增强文本字符建议,以最大限度地提高它们对场景图像中文本元素的覆盖率,从而在不需要使用非常深的架构或大量训练数据的情况下获得令人满意的文本检测率。在多分辨率建议上使用简单快速的几何变换,我们的系统在几个具有挑战性的数据集上取得了良好的结果,同时在台式计算机上进行训练和测试的计算效率也很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信