A new approach for the design of reinforcement schemes for learning automata: stochastic estimator learning algorithms

G. Papadimitriou
{"title":"A new approach for the design of reinforcement schemes for learning automata: stochastic estimator learning algorithms","authors":"G. Papadimitriou","doi":"10.1109/TAI.1991.167109","DOIUrl":null,"url":null,"abstract":"A new approach to the design of S-model ergodic learning automata is introduced. The new scheme uses a stochastic estimator and is able to operate in nonstationary environments with high accuracy and high adaptation rate. The estimator is always recently updated and, consequently, is able to be adapted to environmental changes. The performance of the stochastic estimator learning automation (SELA) is superior to that of the previous well-known S-model ergodic schemes. Furthermore, it is proved that SELA is absolutely expedient in every stationary S-model random environment.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A new approach to the design of S-model ergodic learning automata is introduced. The new scheme uses a stochastic estimator and is able to operate in nonstationary environments with high accuracy and high adaptation rate. The estimator is always recently updated and, consequently, is able to be adapted to environmental changes. The performance of the stochastic estimator learning automation (SELA) is superior to that of the previous well-known S-model ergodic schemes. Furthermore, it is proved that SELA is absolutely expedient in every stationary S-model random environment.<>
一种设计学习自动机强化方案的新方法:随机估计学习算法
介绍了一种设计s型遍历学习自动机的新方法。该方法采用随机估计量,能够在非平稳环境下运行,具有较高的精度和自适应率。估计器总是最近更新的,因此,能够适应环境的变化。随机估计器学习自动化(SELA)的性能优于先前已知的s模型遍历方案。进一步证明了SELA在任何平稳s模型随机环境下都是绝对有利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信