Dimitrios Pliatsios, Alexandros-Apostolos A. Boulogeorgos, T. Lagkas, V. Argyriou, I. Moscholios, P. Sarigiannidis
{"title":"Semi-Grant-Free Non-Orthogonal Multiple Access for Tactile Internet of Things","authors":"Dimitrios Pliatsios, Alexandros-Apostolos A. Boulogeorgos, T. Lagkas, V. Argyriou, I. Moscholios, P. Sarigiannidis","doi":"10.1109/pimrc50174.2021.9569640","DOIUrl":null,"url":null,"abstract":"Ultra-low latency connections for a massive number of devices are one of the main requirements of the next-generation tactile Internet-of-Things (TIoT). Grant-free non-orthogonal multiple access (GF-NOMA) is a novel paradigm that leverages the advantages of grant-free access and non-orthogonal transmissions, to deliver ultra-low latency connectivity. In this work, we present a joint channel assignment and power allocation solution for semi-GF-NOMA systems, which provides access to both grant-based (GB) and grant-free (GF) devices, maximizes the network throughput, and is capable of ensuring each device’s throughput requirements. In this direction, we provide the mathematical formulation of the aforementioned problem. After explaining that it is not convex, we propose a solution strategy based on the Lagrange multipliers and subgradient method. To evaluate the performance of our solution, we carry out system-level Monte Carlo simulations. The simulation results indicate that the proposed solution can optimize the total system throughput and achieve a high association rate, while taking into account the minimum throughput requirements of both GB and GF devices.","PeriodicalId":283606,"journal":{"name":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pimrc50174.2021.9569640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Ultra-low latency connections for a massive number of devices are one of the main requirements of the next-generation tactile Internet-of-Things (TIoT). Grant-free non-orthogonal multiple access (GF-NOMA) is a novel paradigm that leverages the advantages of grant-free access and non-orthogonal transmissions, to deliver ultra-low latency connectivity. In this work, we present a joint channel assignment and power allocation solution for semi-GF-NOMA systems, which provides access to both grant-based (GB) and grant-free (GF) devices, maximizes the network throughput, and is capable of ensuring each device’s throughput requirements. In this direction, we provide the mathematical formulation of the aforementioned problem. After explaining that it is not convex, we propose a solution strategy based on the Lagrange multipliers and subgradient method. To evaluate the performance of our solution, we carry out system-level Monte Carlo simulations. The simulation results indicate that the proposed solution can optimize the total system throughput and achieve a high association rate, while taking into account the minimum throughput requirements of both GB and GF devices.