{"title":"High-performance thin-film garnet materials for Magneto-Optic and nanophotonic applications","authors":"M. Vasiliev, M. Nur-E-Alam, V. Kotov, K. Alameh","doi":"10.1109/COMMAD.2010.5699797","DOIUrl":null,"url":null,"abstract":"Since the 1960's, Magneto-optic (MO) garnet materials have been studied extensively. These materials can possess world-record MO performance characteristics in terms of Faraday rotation and optical quality. Among the rear-earth-doped garnets, the Bi-substituted iron garnet is the best candidate for use as a functional material in different integrated-optics, imaging/image processing applications and also in forward-looking applications e.g. the design of metamaterials with non-reciprocal properties. We have established a set of technologies for fabricating ferrimagnetic garnet films of type (BiDy)3(FeGa)5O12 and also garnet-oxide nanocomposite (BiDy)3(FeGa)5O12 : Bi2O3 layers possessing record-high MO quality across the visible spectral range [1] using RF-magnetron sputtering and oven annealing. Our MO garnet films possess excellent optical and magnetic properties, which make them very attractive and promising for a large range of optoelectronic, photonics-related and MO imaging applications.","PeriodicalId":129653,"journal":{"name":"2010 Conference on Optoelectronic and Microelectronic Materials and Devices","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Conference on Optoelectronic and Microelectronic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2010.5699797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Since the 1960's, Magneto-optic (MO) garnet materials have been studied extensively. These materials can possess world-record MO performance characteristics in terms of Faraday rotation and optical quality. Among the rear-earth-doped garnets, the Bi-substituted iron garnet is the best candidate for use as a functional material in different integrated-optics, imaging/image processing applications and also in forward-looking applications e.g. the design of metamaterials with non-reciprocal properties. We have established a set of technologies for fabricating ferrimagnetic garnet films of type (BiDy)3(FeGa)5O12 and also garnet-oxide nanocomposite (BiDy)3(FeGa)5O12 : Bi2O3 layers possessing record-high MO quality across the visible spectral range [1] using RF-magnetron sputtering and oven annealing. Our MO garnet films possess excellent optical and magnetic properties, which make them very attractive and promising for a large range of optoelectronic, photonics-related and MO imaging applications.