{"title":"Floorplanning and topology generation for application-specific Network-on-Chip","authors":"Bei Yu, Sheqin Dong, Song Chen, S. Goto","doi":"10.1109/ASPDAC.2010.5419825","DOIUrl":null,"url":null,"abstract":"Network-on-Chip(NoC) architectures have been proposed as a promising alternative to classical bus-based communication architectures. In this paper, we propose a two phases framework to solve application-specific NoCs topology generation problem. At floorplanning phase, we carry out partition driven floorplanning. At post-floorplanning phase, a heuristic method and a min-cost max-flow algorithm is used to insert switches and network interfaces. Finally, we allocate paths to minimize power consumption. The experimental results show our algorithm is effective for power saving.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
Network-on-Chip(NoC) architectures have been proposed as a promising alternative to classical bus-based communication architectures. In this paper, we propose a two phases framework to solve application-specific NoCs topology generation problem. At floorplanning phase, we carry out partition driven floorplanning. At post-floorplanning phase, a heuristic method and a min-cost max-flow algorithm is used to insert switches and network interfaces. Finally, we allocate paths to minimize power consumption. The experimental results show our algorithm is effective for power saving.