Automatically Generating Task-Oriented API Learning Guide

Zixiao Zhu, Chenyan Hua, Yanzhen Zou, Bing Xie, Junfeng Zhao
{"title":"Automatically Generating Task-Oriented API Learning Guide","authors":"Zixiao Zhu, Chenyan Hua, Yanzhen Zou, Bing Xie, Junfeng Zhao","doi":"10.1145/3131704.3131714","DOIUrl":null,"url":null,"abstract":"Learning and reusing open source API libraries remain a time consuming process due to the documentation quality and the knowledge gap between API providers and users. Some researchers and API providers have found that the development tasks would narrow the knowledge gap and meet the needs of busy developers. To our knowledge, there is no existing work to generating task oriented API documents. In this paper, we propose an automatic approach to generating task oriented API learning guide. The guide is organized by a hierarchical task list. We integrate the natural language processing techniques with an evidence-based filtering pipeline in our approach. We also employ a graph-based clustering procedure to generate a three-layer task list. Furthermore, we define the normal form of the task phrases as the metadata in our approach. The approach has been implemented as a tool, APITasks. We used it to generate the API documents for four libraries. In an empirical study, we evaluate the accuracy and completeness of our approach with the manually created benchmarks. The results affirm the capability of our approach.","PeriodicalId":349438,"journal":{"name":"Proceedings of the 9th Asia-Pacific Symposium on Internetware","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th Asia-Pacific Symposium on Internetware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3131704.3131714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Learning and reusing open source API libraries remain a time consuming process due to the documentation quality and the knowledge gap between API providers and users. Some researchers and API providers have found that the development tasks would narrow the knowledge gap and meet the needs of busy developers. To our knowledge, there is no existing work to generating task oriented API documents. In this paper, we propose an automatic approach to generating task oriented API learning guide. The guide is organized by a hierarchical task list. We integrate the natural language processing techniques with an evidence-based filtering pipeline in our approach. We also employ a graph-based clustering procedure to generate a three-layer task list. Furthermore, we define the normal form of the task phrases as the metadata in our approach. The approach has been implemented as a tool, APITasks. We used it to generate the API documents for four libraries. In an empirical study, we evaluate the accuracy and completeness of our approach with the manually created benchmarks. The results affirm the capability of our approach.
自动生成面向任务的API学习指南
由于文档质量和API提供者与用户之间的知识差距,学习和重用开源API库仍然是一个耗时的过程。一些研究人员和API提供商发现,开发任务可以缩小知识差距,满足繁忙的开发人员的需求。据我们所知,目前还没有生成面向任务的API文档的工作。本文提出了一种自动生成面向任务的API学习指南的方法。该指南由分层任务列表组织。在我们的方法中,我们将自然语言处理技术与基于证据的过滤管道相结合。我们还使用了一个基于图的聚类过程来生成一个三层任务列表。此外,我们将任务短语的标准形式定义为我们方法中的元数据。该方法已经作为APITasks工具实现。我们使用它为四个库生成API文档。在一项实证研究中,我们使用手动创建的基准来评估我们的方法的准确性和完整性。结果肯定了我们的方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信