Identification of actuator model in an electrical machine by prediction error method and cultural particle swarm optimization

S. Kiviluoto, Ying Wu, K. Zenger, X. Gao
{"title":"Identification of actuator model in an electrical machine by prediction error method and cultural particle swarm optimization","authors":"S. Kiviluoto, Ying Wu, K. Zenger, X. Gao","doi":"10.1109/ICSENGT.2011.5993424","DOIUrl":null,"url":null,"abstract":"This paper discusses identification of an actuator model, which has been built inside a two-pole induction motor in order to control rotor vibrations. The methods used for identification are prediction error method and cultural particle swarm optimization with mutation. The first-mentioned method produces a black box model with correspondence to input-output measurements. The second method is used to identify parameters of a linear time-invariant state-space model, which is based on electromechanical equations. The results are compared in time domain and in frequency domain.","PeriodicalId":346890,"journal":{"name":"2011 IEEE International Conference on System Engineering and Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on System Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENGT.2011.5993424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper discusses identification of an actuator model, which has been built inside a two-pole induction motor in order to control rotor vibrations. The methods used for identification are prediction error method and cultural particle swarm optimization with mutation. The first-mentioned method produces a black box model with correspondence to input-output measurements. The second method is used to identify parameters of a linear time-invariant state-space model, which is based on electromechanical equations. The results are compared in time domain and in frequency domain.
基于预测误差法和培养粒子群算法的电机作动器模型辨识
本文讨论了为控制转子振动而建立的双极感应电动机作动器模型的辨识问题。采用预测误差法和带突变的培养粒子群算法进行识别。第一个提到的方法产生一个与输入输出测量相对应的黑盒模型。第二种方法是基于机电方程的线性定常状态空间模型的参数辨识。结果在时域和频域进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信