D. Lewis, Gordon R. Chiu, J. Chromczak, David R. Galloway, Benjamin Gamsa, Valavan Manohararajah, Ian Milton, Tim Vanderhoek, John Van Dyken
{"title":"The Stratix™ 10 Highly Pipelined FPGA Architecture","authors":"D. Lewis, Gordon R. Chiu, J. Chromczak, David R. Galloway, Benjamin Gamsa, Valavan Manohararajah, Ian Milton, Tim Vanderhoek, John Van Dyken","doi":"10.1145/2847263.2847267","DOIUrl":null,"url":null,"abstract":"This paper describes architectural enhancements in the Altera Stratix? 10 HyperFlex? FPGA architecture, fabricated in the Intel 14nm FinFET process. Stratix 10 includes ubiquitous flip-flops in the routing to enable a high degree of pipelining. In contrast to the earlier architectural exploration of pipelining in pass-transistor based architectures, the direct drive routing fabric in Stratix-style FPGAs enables an extremely low-cost pipeline register. The presence of ubiquitous flip-flops simplifies circuit retiming and improves performance. The availability of predictable retiming affects all stages of the cluster, place and route flow. Ubiquitous flip-flops require a low-cost clock network with sufficient flexibility to enable pipelining of dozens of clock domains. Different cost/performance tradeoffs in a pipelined fabric and use of a 14nm process, lead to other modifications to the routing fabric and the logic element. User modification of the design enables even higher performance, averaging 2.3X faster in a small set of designs.","PeriodicalId":438572,"journal":{"name":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2847263.2847267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
Abstract
This paper describes architectural enhancements in the Altera Stratix? 10 HyperFlex? FPGA architecture, fabricated in the Intel 14nm FinFET process. Stratix 10 includes ubiquitous flip-flops in the routing to enable a high degree of pipelining. In contrast to the earlier architectural exploration of pipelining in pass-transistor based architectures, the direct drive routing fabric in Stratix-style FPGAs enables an extremely low-cost pipeline register. The presence of ubiquitous flip-flops simplifies circuit retiming and improves performance. The availability of predictable retiming affects all stages of the cluster, place and route flow. Ubiquitous flip-flops require a low-cost clock network with sufficient flexibility to enable pipelining of dozens of clock domains. Different cost/performance tradeoffs in a pipelined fabric and use of a 14nm process, lead to other modifications to the routing fabric and the logic element. User modification of the design enables even higher performance, averaging 2.3X faster in a small set of designs.