Frequent Itemsets Mining Algorithm for Uncertain Data Streams Based on Triangular Matrix

Yang Junrui, Yang Jingyi
{"title":"Frequent Itemsets Mining Algorithm for Uncertain Data Streams Based on Triangular Matrix","authors":"Yang Junrui, Yang Jingyi","doi":"10.1109/ICPECA51329.2021.9362705","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of frequent itemsets mining in uncertain data flows, this paper proposes a botm-mine for frequent itemsets mining in uncertain data flows. In this algorithm, trigonometric matrix, queue and frequent item set tree are used to construct the profile structure to store the relevant data flow information of transactions. The support degree of items $1_{-}$ and $2_{-}$ itemsets is efficiently stored in the matrix through matrix. Compared with the transaction matrix, it not only saves space, but also reduces the complexity of computing each support degree, and at the same time has better space-time efficiency.","PeriodicalId":119798,"journal":{"name":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA51329.2021.9362705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of frequent itemsets mining in uncertain data flows, this paper proposes a botm-mine for frequent itemsets mining in uncertain data flows. In this algorithm, trigonometric matrix, queue and frequent item set tree are used to construct the profile structure to store the relevant data flow information of transactions. The support degree of items $1_{-}$ and $2_{-}$ itemsets is efficiently stored in the matrix through matrix. Compared with the transaction matrix, it not only saves space, but also reduces the complexity of computing each support degree, and at the same time has better space-time efficiency.
基于三角矩阵的不确定数据流频繁项集挖掘算法
针对不确定数据流中频繁项集的挖掘问题,提出了一种不确定数据流中频繁项集挖掘的底挖掘方法。该算法采用三角矩阵、队列和频繁项集树构造轮廓结构来存储交易的相关数据流信息。项目$1_{-}$和$2_{-}$ itemset的支持度通过矩阵有效地存储在矩阵中。与事务矩阵相比,它不仅节省了空间,而且降低了计算各个支持度的复杂度,同时具有更好的时空效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信